[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a192069 -id:a192069
     Sort: relevance | references | number | modified | created      Format: long | short | data
0-sequence of reduction of binomial coefficient sequence B(n,4)=A000332 by x^2 -> x+1.
+10
3
1, 1, 16, 51, 191, 569, 1619, 4259, 10694, 25709, 59743, 134818, 296798, 639518, 1352498, 2813750, 5769200, 11676395, 23358450, 46239770, 90667076, 176244326, 339887026, 650715076, 1237467151, 2338753519, 4394813644, 8214444389
OFFSET
1,3
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
Conjecture: G.f.: -x*(-1+5*x-20*x^2+30*x^3-25*x^4+8*x^5) / ( (x-1)*(x^2+x-1)^5 ). - R. J. Mathar, May 04 2014
MATHEMATICA
c[n_] := n (n + 1) (n + 2) (n + 3)/24; (* binomial B(n, 4), A000332 *)
Table[c[n], {n, 1, 15}]
q[x_] := x + 1;
p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
40}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 40}] (* A192248 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 40}] (* A192249 *)
Table[Coefficient[Part[t, n]/5, x, 1], {n, 1, 40}] (* A192069 *)
(* by Peter J. C. Moses, Jun 20 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved
1-sequence of reduction of binomial coefficient sequence B(n,4)=A000332 by x^2 -> x+1.
+10
2
0, 5, 20, 90, 300, 930, 2610, 6900, 17295, 41605, 96660, 218145, 480225, 1034765, 2188385, 4552745, 9334760, 18892805, 37794765, 74817520, 146702410, 285169310, 549948760, 1052879110, 2002263910, 3784182685, 7110957850, 13291250220
OFFSET
1,2
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
a(n) = 5*A192069(n).
Conjecture: G.f.: 5*x^2*(1-2*x+4*x^2-3*x^3+x^4) / ( (x-1)*(x^2+x-1)^5 ). - R. J. Mathar, May 04 2014
MATHEMATICA
(See A192248.)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved

Search completed in 0.005 seconds