[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a191217 -id:a191217
     Sort: relevance | references | number | modified | created      Format: long | short | data
Odd numbers n such that sigma(n) is congruent to 2 modulo 4.
+10
26
5, 13, 17, 29, 37, 41, 45, 53, 61, 73, 89, 97, 101, 109, 113, 117, 137, 149, 153, 157, 173, 181, 193, 197, 229, 233, 241, 245, 257, 261, 269, 277, 281, 293, 313, 317, 325, 333, 337, 349, 353, 369, 373, 389, 397, 401, 405, 409, 421, 425, 433, 449, 457, 461, 477
OFFSET
1,1
COMMENTS
Exactly the numbers of the form p^{4k+1}*m^2 with p a prime congruent to 1 modulo 4 and m a positive integer coprime with p. The odd perfect numbers are all of this form.
See A228058 for the terms where m > 1. - Antti Karttunen, Apr 22 2019
EXAMPLE
For n=3 one has a(3)=17 since sigma(17) = 18 = 4*4 +2 is congruent to 2 modulo 4
MAPLE
with(numtheory): genodd := proc(b) local n, s, d; for n from 1 to b by 2 do s := sigma(n);
if modp(s, 4)=2 then print(n); fi; od; end;
MATHEMATICA
Select[Range[1, 501, 2], Mod[DivisorSigma[1, #], 4]==2&] (* Harvey P. Dale, Nov 12 2017 *)
PROG
(PARI) forstep(n=1, 10^3, 2, if(2==(sigma(n)%4), print1(n, ", "))) \\ Joerg Arndt, May 27 2011
(PARI) list(lim)=my(v=List()); forstep(e=1, logint(lim\=1, 5), 4, forprimestep(p=5, sqrtnint(lim, e), 4, my(pe=p^e); forstep(m=1, sqrtint(lim\pe), 2, if(m%p, listput(v, pe*m^2))))); Set(v) \\ Charles R Greathouse IV, Feb 16 2022
CROSSREFS
Subsequence of A191217.
Cf. A228058, A324898 (subsequences).
KEYWORD
nonn,easy
AUTHOR
Luis H. Gallardo, May 26 2011
STATUS
approved
a(n) = sigma(n) mod 4.
+10
11
1, 3, 0, 3, 2, 0, 0, 3, 1, 2, 0, 0, 2, 0, 0, 3, 2, 3, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 3, 0, 2, 0, 3, 2, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 3, 0, 1, 2, 0, 0, 2, 0
OFFSET
1,2
FORMULA
a(n) = A010873(A000203(n)). - Antti Karttunen, Nov 07 2017
MAPLE
A105824:= n-> (numtheory[sigma](n) mod 4):
seq (A105824(n), n=1..105); # Jani Melik, Jan 26 2011
MATHEMATICA
Table[Mod[DivisorSigma[1, n], 4], {n, 100}] (* Wesley Ivan Hurt, Nov 07 2017 *)
PROG
(PARI) a(n)=sigma(n)%4
CROSSREFS
Sequences sigma(n) mod k: A053866 (k=2), A074941 (k=3), A105824 (k=4), A105825 (k=5), A084301 (k=6), A105826 (k=7), A105827 (k=8).
KEYWORD
easy,nonn
AUTHOR
Shyam Sunder Gupta, May 05 2005
STATUS
approved
Numbers which are uniquely decomposable into a sum of two squares, the unique decomposition being with two distinct nonzero squares.
+10
8
5, 10, 13, 17, 20, 26, 29, 34, 37, 40, 41, 45, 52, 53, 58, 61, 68, 73, 74, 80, 82, 89, 90, 97, 101, 104, 106, 109, 113, 116, 117, 122, 136, 137, 146, 148, 149, 153, 157, 160, 164, 173, 178, 180, 181, 193, 194, 197, 202, 208, 212, 218, 226, 229, 232, 233, 234, 241, 244, 245, 257, 261, 269, 272
OFFSET
1,1
COMMENTS
Numbers with exactly one prime factor of form 4*k+1, that must have multiplicity one, and no prime factor of the form 4*k+3 with odd multiplicity. There is thus no square in the sequence.
These are the primitive elements of A004431, the integers which are the sum of two nonzero distinct squares.
Numbers such that A004018(a(n)) = 8.
The square of these numbers is also uniquely decomposable into a sum of two squares, thus this sequence is a subsequence of A084645.
Also a subsequence of A191217: the two sequences are equal up to a(76) = 320, then A191217(77) = 325, the value which is missing from this sequence, as a(77) = 328 = A191217(78). (3125 is also missing from this sequence, although present in A191217, and it is the 31st such number). - Corrected by Antti Karttunen, May 14 2022.
Numbers n such that n^3 is the sum of two nonzero squares in exactly two ways. - Altug Alkan, Jul 01 2016
Sequence A125022 (numbers with a unique partition as the sum of 2 squares x^2 + y^2), but without any terms of A028982 (squares and twice squares) that might occur there. - Antti Karttunen, May 14 2022
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000 (extending the previous b-file from Jean-Christophe Hervé, which contained terms up to the 1647th term 10009, but accidentally missed terms 8992 and 9376)
Eric Weisstein's World of Mathematics, Square Number
G. Xiao, Two squares
FORMULA
Terms are obtained by the products A125853(k)*A002144(p) for k, p > 0, ordered by increasing values.
{k | A004018(k) = 8}.
EXAMPLE
a(1) = 5 = 4+1, a(2) = 10 = 9+1, a(3) = 13 = 9+4. However 2 = 1+1, 4 = 4+0, 8 = 4+4 are excluded because the unique decomposition of these numbers in two squares is not with two distinct nonzero squares; 25, 50, 100 are also excluded because there are two decompositions of these numbers in two squares (including one with equal or zero squares).
PROG
(PARI) isok(n) = {f = factor(n); nb1 = 0; for (i=1, #f~, p = f[i, 1]; ep = f[i, 2]; if (p % 4 == 1, nb1 ++; if (ep != 1, return (0))); if (p % 4 == 3, if (ep % 2, return (0))); ); return (nb1 == 1); } \\ Michel Marcus, Nov 17 2013
CROSSREFS
Cf. A001481, A004431, A002144, A028982, A353813 (characteristic function).
Subsequence of A004431, of A084645, of A125022, and of A191217.
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) = 1 if sigma(n) is of the form 4m+2, otherwise 0.
+10
7
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
FORMULA
a(n) = A347870(n) - A353811(n).
a(n) >= A353813(n).
MATHEMATICA
a[n_] := If[Mod[DivisorSigma[1, n], 4] == 2, 1, 0]; Array[a, 100] (* Amiram Eldar, May 13 2022 *)
PROG
(PARI) A353812(n) = (2==(sigma(n)%4));
CROSSREFS
Characteristic function of A191217.
Differs from A353813 for the first time at n=325, where a(325) = 1, while A353813(325) = 0.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2022
STATUS
approved
Numbers k such that sigma(k) is congruent to 2 modulo 8.
+10
6
10, 17, 20, 26, 40, 41, 52, 58, 73, 74, 80, 89, 90, 97, 104, 106, 113, 116, 122, 137, 148, 153, 160, 180, 193, 202, 208, 212, 218, 232, 233, 234, 241, 244, 257, 281, 296, 298, 313, 314, 320, 325, 337, 346, 353, 360, 362, 369, 394, 401, 404, 409, 416, 424, 433, 436, 449, 457, 458, 464, 468, 488, 490, 521, 522, 538, 554
OFFSET
1,1
PROG
(PARI) isA332226(n) = (2==(sigma(n)%8));
CROSSREFS
Cf. A000203.
Subsequence of A191217.
Subsequences: A332227 (odd terms), A332228.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 13 2020
STATUS
approved
Numbers k for which A354102(k) = A354102(sigma(k)).
+10
6
1, 24, 2475, 2520, 2728, 5347, 6683, 8184, 8307, 8568, 9108, 9306, 10106, 11484, 12974, 16041, 17892, 20049, 23265, 25265, 26199, 30318, 32256, 32435, 38922, 39618, 40918, 44010, 44576, 44872, 50976, 55224, 55720, 56516, 58817, 63720, 63952, 64890, 65689, 66528, 67356, 69860, 72072, 73409, 74448, 75795, 79101, 83160
OFFSET
1,2
COMMENTS
No common terms with A006872 in range a(2) .. a(1001).
Among the 1001 initial terms, only 3119744 and 13890816 occur also in A191217.
PROG
(PARI)
\\ Needs also the program from A267099:
A354102(n) = eulerphi(A267099(n));
isA354106(k) = (A354102(k)==A354102(sigma(k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 18 2022
STATUS
approved
Numbers n > 1 for which sigma(A156552(n)) == 2 (mod 4).
+10
4
6, 14, 15, 18, 33, 35, 38, 42, 54, 58, 65, 69, 70, 75, 77, 90, 93, 102, 106, 110, 119, 130, 143, 145, 150, 162, 165, 174, 177, 185, 190, 209, 217, 221, 230, 231, 234, 242, 245, 273, 285, 287, 290, 294, 299, 305, 323, 330, 338, 350, 357, 375, 378, 390, 407, 410, 414, 434, 437, 450, 455, 465, 469, 473, 483, 493, 494, 507
OFFSET
1,1
COMMENTS
Sequence A005940(1+A191217(n)), n >= 1, sorted into ascending order.
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
A324824(n) = ((n>1)&&(2==(sigma(A156552(n))%4)));
A324824(n) = (2==(A323243(n)%4)); \\ Alternatively.
for(n=1, oo, if(A324824(n), print1(n, ", ")));
CROSSREFS
Cf. A000203, A005940, A191217, A324812, A324813, A324824 (characteristic function).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2019
STATUS
approved
a(n) = 1 if n>1 and sigma(A156552(n)) is congruent to 2 modulo 4, otherwise a(n) = 0.
+10
4
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1
PROG
(PARI)
A156552(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 by David A. Corneth
A324824(n) = ((n>1)&&(2==(sigma(A156552(n))%4)));
(PARI) A324824(n) = (2==(A323243(n)%4)); \\ This needs code also from A323243.
CROSSREFS
Characteristic function of A324814.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 16 2019
STATUS
approved
Numbers m such that sigma(m)+phi(m) == 2 mod 4.
+10
3
1, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 20, 22, 23, 26, 27, 29, 31, 34, 37, 38, 40, 41, 43, 45, 46, 47, 52, 53, 54, 58, 59, 61, 62, 67, 68, 71, 73, 74, 79, 80, 82, 83, 86, 89, 90, 94, 97, 101, 103, 104, 106, 107, 109, 113, 116, 117, 118, 122, 127, 131, 134, 136, 137, 139, 142, 146, 148, 149, 151, 153, 157
OFFSET
1,2
COMMENTS
Union of {1}, A191217 and A292762.
LINKS
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
MATHEMATICA
Do[If[Mod[DivisorSigma[1, n] + EulerPhi[n], 4]==2, Print[n]], {n, 1, 10^3}] (* Vincenzo Librandi, Oct 02 2017 *)
PROG
(PARI) isok(m) = ((sigma(m)+eulerphi(m)) % 4) == 2; \\ Michel Marcus, Oct 02 2017
CROSSREFS
A065091 (odd primes) is a subsequence. - Michel Marcus, Oct 02 2017
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 26 2017
STATUS
approved
Numbers of the form 4u+2 in A351551.
+10
2
2, 10, 34, 106, 1666, 8746, 26242, 134946, 2125762, 3997714, 8298346, 156057642, 323814834, 672166026, 3901441050
OFFSET
1,1
COMMENTS
This is the intersection of A016825 and A351551. Possibly after the initial 2 also the intersection of A191217 and A351551, or more precisely, of 2*A191218 and A351551. However, so far no common terms with A351538 encountered.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Feb 17 2022
STATUS
approved

Search completed in 0.061 seconds