[go: up one dir, main page]

login
A053866
Parity of A000203(n), the sum of the divisors of n; a(n) = 1 when n is a square or twice a square, 0 otherwise.
45
1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0
OFFSET
1,1
COMMENTS
Also parity of A001227, the number of odd divisors of n. - Omar E. Pol, Apr 04 2016
Also parity of A000593, the sum of odd divisors of n. - Omar E. Pol, Apr 05 2016
Characteristic function of A028982. - Antti Karttunen, Sep 25 2017
It appears that this is also the parity of A067742, the number of middle divisors of n. - Omar E. Pol, Mar 18 2018
Also parity of the deficiency of n (A033879) and of the abundance of n (A033880). - Omar E. Pol, Nov 02 2024
FORMULA
a(n) = A000203(n) mod 2. a(n)=1 iff n>0 is a square or twice a square.
Multiplicative with a(2^e)=1, a(p^e)=1 if e even, 0 otherwise.
a(n) = A093709(n) if n>0.
Dirichlet g.f.: zeta(2s)(1+2^-s). - Michael Somos, Apr 12 2004
a(n) = A001157(n) mod 2. - R. J. Mathar, Apr 02 2011
a(n) = floor(sqrt(n)) + floor(sqrt(n/2)) - floor(sqrt(n-1))-floor(sqrt((n-1)/2)). - Enrique PĂ©rez Herrero, Oct 15 2013
a(n) = A000035(A000203(n)). - Omar E. Pol, Oct 26 2013
a(n) = A063524(A286357(n)) = A063524(A292583(n)). - Antti Karttunen, Sep 25 2017
a(n) = A295896(A156552(n)). - Antti Karttunen, Dec 02 2017
a(n) = Sum_{ m: m^2|n } A019590(n/m^2). - Andrey Zabolotskiy, May 07 2018
G.f.: (theta_3(x) + theta_3(x^2))/2 - 1. - Ilya Gutkovskiy, May 23 2019
Sum_{k=1..n} a(k) ~ (1 + 1/sqrt(2)) * sqrt(n). - Vaclav Kotesovec, Oct 16 2020
MAPLE
A053866:= (n -> numtheory[sigma](n) mod 2):
seq (A053866(n), n=0..104); # Jani Melik, Jan 28 2011
MATHEMATICA
Mod[DivisorSigma[1, Range[110]], 2] (* Harvey P. Dale, Sep 04 2017 *)
PROG
(PARI) {a(n) = if( n<1, 0, issquare(n) || issquare(2*n))} /* Michael Somos, Apr 12 2004 */
(Python)
from sympy.ntheory.primetest import is_square
def A053866(n): return int(is_square(n) or is_square(n<<1)) # Chai Wah Wu, Jan 09 2023
CROSSREFS
Essentially same as A093709.
Sequence in context: A266459 A354199 A214509 * A143259 A359818 A207710
KEYWORD
nonn,mult
AUTHOR
Henry Bottomley, Mar 29 2000
EXTENSIONS
More terms from James A. Sellers, Apr 08 2000
Alternative description added to the name by Antti Karttunen, Sep 25 2017
STATUS
approved