[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a199964 -id:a199964
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x).
+10
137
6, 5, 9, 2, 6, 6, 0, 4, 5, 7, 6, 6, 9, 4, 6, 0, 7, 4, 5, 3, 7, 3, 4, 8, 5, 7, 9, 5, 6, 3, 0, 6, 7, 6, 1, 1, 6, 1, 5, 3, 2, 8, 0, 2, 1, 6, 4, 4, 5, 1, 6, 7, 9, 7, 3, 6, 0, 9, 4, 5, 1, 3, 0, 3, 1, 4, 1, 0, 7, 3, 6, 4, 4, 5, 5, 8, 7, 4, 2, 6, 6, 2, 4, 4, 0, 7, 1, 9, 5, 1, 9, 3, 1, 6, 4, 1, 4, 4, 7
OFFSET
0,1
COMMENTS
For many choices of a,b,c, there are exactly two numbers x>0 satisfying a*x^2+b*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... least x, greatest x
1.... 1.... 2.... A199949, A199950
1.... 1.... 3.... A199951, A199952
1.... 1.... 4.... A199953, A199954
1.... 2.... 3.... A199955, A199956
1.... 2.... 4.... A199957, A199958
1.... 3.... 3.... A199959, A199960
1.... 3.... 4.... A199961, A199962
1.... 4.... 3.... A199963, A199964
1.... 4.... 4.... A199965, A199966
2.... 1.... 3.... A199967, A200003
2.... 1.... 4.... A200004, A200005
3.... 1.... 4.... A200006, A200007
4.... 1.... 4.... A200008, A200009
1... -1.... 1.... A200010, A200011
1... -1.... 2.... A200012, A200013
1... -1.... 3.... A200014, A200015
1... -1.... 4.... A200016, A200017
1... -2.... 1.... A200018, A200019
1... -2.... 2.... A200020, A200021
1... -2.... 3.... A200022, A200023
1... -2.... 4.... A200024, A200025
1... -3.... 1.... A200026, A200027
1... -3.... 2.... A200093, A200094
1... -3.... 3.... A200095, A200096
1... -3.... 4.... A200097, A200098
1... -4.... 1.... A200099, A200100
1... -4.... 2.... A200101, A200102
1... -4.... 3.... A200103, A200104
1... -4.... 4.... A200105, A200106
2... -1.... 1.... A200107, A200108
2... -1.... 2.... A200109, A200110
2... -1.... 3.... A200111, A200112
2... -1.... 4.... A200114, A200115
2... -2.... 1.... A200116, A200117
2... -2.... 3.... A200118, A200119
2... -3.... 1.... A200120, A200121
2... -3.... 2.... A200122, A200123
2... -3.... 3.... A200124, A200125
2... -3.... 4.... A200126, A200127
2... -4.... 1.... A200128, A200129
2... -4.... 3.... A200130, A200131
3... -1.... 1.... A200132, A200133
3... -1.... 2.... A200223, A200224
3... -1.... 3.... A200225, A200226
3... -1.... 4.... A200227, A200228
3... -2.... 1.... A200229, A200230
3... -2.... 2.... A200231, A200232
3... -2.... 3.... A200233, A200234
3... -2.... 4.... A200235, A200236
3... -3.... 1.... A200237, A200238
3... -3.... 2.... A200239, A200240
3... -3.... 4.... A200241, A200242
3... -4.... 1.... A200277, A200278
3... -4.... 2.... A200279, A200280
3... -4.... 3.... A200281, A200282
3... -4.... 4.... A200283, A200284
4... -1.... 1.... A200285, A200286
4... -1.... 2.... A200287, A200288
4... -1.... 3.... A200289, A200290
4... -1.... 4.... A200291, A200292
4... -2.... 1.... A200293, A200294
4... -2.... 3.... A200295, A200296
4... -3.... 1.... A200299, A200300
4... -3.... 2.... A200297, A200298
4... -3.... 3.... A200301, A200302
4... -3.... 4.... A200303, A200304
4... -4.... 1.... A200305, A200306
4... -4.... 3.... A200307, A200308
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199949, take f(x,u,v)=x^2+u*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.
LINKS
EXAMPLE
least x: 0.659266045766946074537348579563067611...
greatest x: 1.2710268008159460640047188480978502...
MATHEMATICA
(* Program 1: A199949 *)
a = 1; b = 1; c = 2;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110]
RealDigits[r] (* A199949 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110]
RealDigits[r] (* A199950 *)
(* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *)
f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x];
t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}];
ListPlot3D[Flatten[t, 1]] (* for A199949 *)
PROG
(PARI) a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018
CROSSREFS
Cf. A199950.
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 12 2011
EXTENSIONS
A-number corrected by Jaroslav Krizek, Nov 27 2011
STATUS
approved
Decimal expansion of least x satisfying x^2 + 4*cos(x) = 3*sin(x).
+10
3
1, 2, 3, 9, 7, 5, 1, 1, 5, 4, 8, 3, 0, 7, 0, 3, 3, 2, 2, 6, 6, 3, 0, 9, 4, 2, 9, 8, 7, 0, 9, 1, 8, 2, 0, 7, 2, 6, 0, 6, 9, 1, 2, 5, 7, 4, 9, 4, 5, 2, 1, 7, 2, 4, 7, 2, 3, 1, 7, 5, 6, 5, 2, 6, 4, 7, 6, 7, 4, 5, 9, 6, 3, 6, 0, 1, 8, 5, 6, 2, 6, 2, 6, 5, 9, 7, 5, 8, 2, 5, 7, 9, 2, 3, 1, 8, 7, 4, 8
OFFSET
1,2
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: 1.2397511548307033226630942987091820...
greatest x: 2.178843303038438478747351546631120...
MATHEMATICA
a = 1; b = 4; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 1.23, 1.24}, WorkingPrecision -> 110]
RealDigits[r] (* A199963 *)
r = x /. FindRoot[f[x] == g[x], {x, 2.17, 2.18}, WorkingPrecision -> 110]
RealDigits[r] (* A199964 *)
PROG
(PARI) a=1; b=4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
CROSSREFS
Cf. A199949.
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 12 2011
STATUS
approved

Search completed in 0.006 seconds