[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200304
Decimal expansion of greatest x satisfying 4*x^2 - 3*cos(x) = 4*sin(x).
3
1, 1, 0, 8, 8, 1, 1, 8, 8, 2, 9, 7, 1, 7, 2, 7, 6, 2, 1, 8, 5, 8, 4, 9, 5, 3, 5, 2, 2, 8, 5, 8, 9, 1, 7, 2, 5, 5, 4, 0, 0, 8, 9, 9, 4, 0, 1, 9, 4, 8, 5, 0, 6, 8, 1, 9, 7, 6, 4, 9, 9, 3, 1, 5, 7, 1, 7, 8, 4, 8, 7, 1, 3, 8, 8, 5, 5, 5, 9, 5, 8, 9, 9, 7, 8, 4, 3, 9, 2, 3, 8, 0, 5, 3, 6, 3, 5, 7, 8
OFFSET
1,4
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.4676436322290565342035400494771...
greatest x: 1.10881188297172762185849535228...
MATHEMATICA
a = 4; b = -3; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110]
RealDigits[r] (* A200303 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[r] (* A200304 *)
PROG
(PARI) a=4; b=-3; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
CROSSREFS
Cf. A199949.
Sequence in context: A373657 A365707 A056194 * A110940 A172352 A141134
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved