OFFSET
1,1
REFERENCES
P. J. Davis, Spirals from Theodorus to Chaos, A K Peters, Wellesley, MA, 1993.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..16384
David Brink, The spiral of Theodorus and sums of zeta-values at the half-integers, The American Mathematical Monthly, Vol. 119, No. 9 (November 2012), pp. 779-786.
Edmund Hlawka, Gleichverteilung und Quadratwurzelschnecke, Monatsh. Math., 89 (1980) 19-44. [For a summary in English see the Davis reference, pp. 157-167.]
Herbert Kociemba, The Spiral of Theodorus.
FORMULA
Sum_{x=1..n-1} arctan(1/sqrt(x)) = 2*sqrt(n) + K + o(1). [Corrected by M. F. Hasler, Mar 31 2022]
Equals Sum_{k>=0} (-1)^k*zeta(k+1/2)/(2*k+1). - Robert B Fowler, Oct 23 2022
EXAMPLE
-2.157782996659446220929142786829577723504139598607562455...
MAPLE
evalf(Sum((-1)^k*Zeta(k + 1/2)/(2*k+1), k=0..infinity), 120); # Vaclav Kotesovec, Mar 01 2016
MATHEMATICA
RealDigits[ NSum[(-1)^k*Zeta[k + 1/2]/(2 k + 1), {k, 0, Infinity}, Method -> "AlternatingSigns", AccuracyGoal -> 2^6, PrecisionGoal -> 2^6, WorkingPrecision -> 2^7], 10, 2^7][[1]] (* Robert G. Wilson v, Jul 11 2013 *)
PROG
(PARI) sumalt(k=0, (-1)^k*zeta(k+1/2)/(2*k+1)) \\ M. F. Hasler, Mar 31 2022
KEYWORD
nonn,cons
AUTHOR
David Brink, Jun 13 2011
STATUS
approved