[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Hlawka's Schneckenkonstante K = -2.157782... (negated).
9

%I #74 Apr 01 2024 02:51:17

%S 2,1,5,7,7,8,2,9,9,6,6,5,9,4,4,6,2,2,0,9,2,9,1,4,2,7,8,6,8,2,9,5,7,7,

%T 7,2,3,5,0,4,1,3,9,5,9,8,6,0,7,5,6,2,4,5,5,1,5,4,8,9,5,5,5,0,8,5,8,8,

%U 6,9,6,4,6,7,9,6,6,0,6,4,8,1,4,9,6,6,9,4,2,9,8,9,4,6,3,9,6,0,8,9,8

%N Decimal expansion of Hlawka's Schneckenkonstante K = -2.157782... (negated).

%D P. J. Davis, Spirals from Theodorus to Chaos, A K Peters, Wellesley, MA, 1993.

%H Robert G. Wilson v, <a href="/A105459/b105459.txt">Table of n, a(n) for n = 1..16384</a>

%H David Brink, <a href="http://www.jstor.org/stable/10.4169/amer.math.monthly.119.09.779">The spiral of Theodorus and sums of zeta-values at the half-integers</a>, The American Mathematical Monthly, Vol. 119, No. 9 (November 2012), pp. 779-786.

%H Edmund Hlawka, <a href="http://dx.doi.org/10.1007/BF01571563">Gleichverteilung und Quadratwurzelschnecke</a>, Monatsh. Math., 89 (1980) 19-44. [For a summary in English see the Davis reference, pp. 157-167.]

%H Herbert Kociemba, <a href="http://kociemba.org/themen/spirale/theodorus.html">The Spiral of Theodorus</a>.

%F Sum_{x=1..n-1} arctan(1/sqrt(x)) = 2*sqrt(n) + K + o(1). [Corrected by _M. F. Hasler_, Mar 31 2022]

%F Equals Sum_{k>=0} (-1)^k*zeta(k+1/2)/(2*k+1). - _Robert B Fowler_, Oct 23 2022

%e -2.157782996659446220929142786829577723504139598607562455...

%p evalf(Sum((-1)^k*Zeta(k + 1/2)/(2*k+1), k=0..infinity), 120); # _Vaclav Kotesovec_, Mar 01 2016

%t RealDigits[ NSum[(-1)^k*Zeta[k + 1/2]/(2 k + 1), {k, 0, Infinity}, Method -> "AlternatingSigns", AccuracyGoal -> 2^6, PrecisionGoal -> 2^6, WorkingPrecision -> 2^7], 10, 2^7][[1]] (* _Robert G. Wilson v_, Jul 11 2013 *)

%o (PARI) sumalt(k=0,(-1)^k*zeta(k+1/2)/(2*k+1)) \\ _M. F. Hasler_, Mar 31 2022

%Y Cf. A185051 for continued fraction expansion.

%Y Cf. A072895, A137515, A352741.

%K nonn,cons

%O 1,1

%A _David Brink_, Jun 13 2011