OFFSET
0,3
COMMENTS
Also the fixed point of the morphism 0->{0,1,2}, 1->{1,2,3}, 2->{2,3,4}, etc. - Robert G. Wilson v, Jul 27 2006
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS, Vol. 12 (2009), Article 09.5.6.
F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
Michael Gilleland, Some Self-Similar Integer Sequences.
A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See pp. 11, 13.
Jan-Christoph Puchta and Jürgen Spilker, Altes und Neues zur Quersumme, Math. Semesterber, Vol. 49 (2002), pp. 209-226; preprint.
Jeffrey O. Shallit, Problem 6450, Advanced Problems, The American Mathematical Monthly, Vol. 91, No. 1 (1984), pp. 59-60; Two series, solution to Problem 6450, ibid., Vol. 92, No. 7 (1985), pp. 513-514.
Vladimir Shevelev, Compact integers and factorials, Acta Arith., Vol. 126, No. 3 (2007), pp. 195-236 (cf. p.205).
Robert Walker, Self Similar Sloth Canon Number Sequences.
Eric Weisstein's World of Mathematics, Digit Sum.
FORMULA
From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(3n) = a(n), a(3n + 1) = a(n) + 1, a(3n + 2) = a(n) + 2.
a(n) = n - 2*Sum_{k>0} floor(n/3^k) = n - 2*A054861(n). (End)
G.f.: (Sum_{k >= 0} (x^(3^k) + 2*x^(2*3^k))/(1 + x^(3^k) + x^(2*3^k)))/(1 - x). - Michael Somos, Mar 06 2004, corrected by Franklin T. Adams-Watters, Nov 03 2005
In general, the sum of digits of (n written in base b) has generating function (Sum_{k>=0} (Sum_{0 <= i < b} i*x^(i*b^k))/(Sum_{i=0..b-1} x^(i*b^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
First differences of A094345. - Vladeta Jovovic, Nov 08 2005
a(n) = A138530(n,3) for n > 2. - Reinhard Zumkeller, Mar 26 2008
a(n) <= 2*log_3(n+1). - Vladimir Shevelev, Jun 01 2011
a(n) = Sum_{k>=0} A030341(n, k). - Philippe Deléham, Oct 21 2011
G.f. satisfies G(x) = (x+2*x^2)/(1-x^3) + (1+x+x^2)*G(x^3), and has a natural boundary at |x|=1. - Robert Israel, Jul 02 2015
a(0) = 0; a(n) = a(n - 3^floor(log_3(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 3*log(3)/2 (Shallit, 1984). - Amiram Eldar, Jun 03 2021
EXAMPLE
a(20) = 2 + 0 + 2 = 4 because 20 is written as 202 base 3.
From Omar E. Pol, Feb 20 2010: (Start)
0,
1,2,
1,2,3,2,3,4,
1,2,3,2,3,4,3,4,5,2,3,4,3,4,5,4,5,6,
1,2,3,2,3,4,3,4,5,2,3,4,3,4,5,4,5,6,3,4,5,4,5,6,5,6,7,2,3,4,3,4,5,4,5,6,3,...
where the k-th row contains a(3^k+i) for 0<=i<2*3^k and converges to A173523 as k->infinity. (End) [Changed conjectures to statements in this entry. - Franklin T. Adams-Watters, Jul 02 2015]
G.f. = x + 2*x^2 + x^3 + 2*x^4 + 3*x^5 + 2*x^6 + 3*x^7 + 4*x^8 + x^9 + 2*x^10 + ...
MAPLE
seq(convert(convert(n, base, 3), `+`), n=0..100); # Robert Israel, Jul 02 2015
MATHEMATICA
Table[Plus @@ IntegerDigits[n, 3], {n, 0, 100}] (* or *)
Nest[Join[#, # + 1, # + 2] &, {0}, 6] (* Robert G. Wilson v, Jul 27 2006 and modified Jul 27 2014 *)
PROG
(PARI) {a(n) = if( n<1, 0, a(n\3) + n%3)}; /* Michael Somos, Mar 06 2004 */
(PARI) A053735(n)=sumdigits(n, 3) \\ Requires version >= 2.7. Use sum(i=1, #n=digits(n, 3), n[i]) in older versions. - M. F. Hasler, Mar 15 2016
(Haskell)
a053735 = sum . a030341_row
-- Reinhard Zumkeller, Feb 21 2013, Feb 19 2012
(Scheme) (define (A053735 n) (let loop ((n n) (s 0)) (if (zero? n) s (let ((d (mod n 3))) (loop (/ (- n d) 3) (+ s d)))))) ;; For R6RS standard. Use modulo instead of mod in older Schemes like MIT/GNU Scheme. - Antti Karttunen, Jun 03 2017
(Magma) [&+Intseq(n, 3):n in [0..104]]; // Marius A. Burtea, Jan 17 2019
(MATLAB) m=1; for u=0:104; sol(m)=sum(dec2base(u, 3)-'0'); m=m+1; end
sol; % Marius A. Burtea, Jan 17 2019
CROSSREFS
KEYWORD
base,nonn,easy
AUTHOR
Henry Bottomley, Mar 28 2000
STATUS
approved