[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A286632
Base-3 digit sum of A254103: a(n) = A053735(A254103(n)).
5
0, 1, 2, 1, 3, 2, 4, 2, 4, 1, 3, 3, 5, 3, 5, 2, 5, 4, 6, 3, 4, 2, 4, 2, 6, 2, 4, 3, 6, 1, 3, 4, 6, 3, 5, 4, 7, 4, 6, 4, 5, 5, 7, 2, 5, 3, 5, 3, 7, 5, 7, 3, 5, 4, 6, 3, 7, 6, 8, 4, 4, 3, 5, 5, 7, 6, 8, 4, 6, 3, 5, 6, 8, 3, 5, 5, 7, 5, 7, 3, 6, 4, 6, 5, 8, 1, 3, 5, 6, 2, 4, 4, 6, 2, 4, 2, 8, 4, 6, 6, 8, 2, 4, 2, 6, 3, 5, 4, 7, 4, 6, 5, 8, 5, 7, 5, 9, 5, 7, 4, 5
OFFSET
0,3
COMMENTS
Reflecting the structure of A254103 also this sequence can be represented as a binary tree:
0
|
...................1...................
2 1
3......../ \........2 4......../ \........2
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
4 1 3 3 5 3 5 2
5 4 6 3 4 2 4 2 6 2 4 3 6 1 3 4
etc.
LINKS
FORMULA
a(n) = A053735(A254103(n)).
a(n) = A056239(A286633(n)).
For all n >= 0, a(A000079(n)) = n+1.
PROG
(Scheme) (define (A286632 n) (A053735 (A254103 n)))
(Python)
from sympy.ntheory.factor_ import digits
def a254103(n):
if n==0: return 0
if n%2==0: return 3*a254103(n/2) - 1
else: return floor((3*(1 + a254103((n - 1)/2)))/2)
def a(n): return sum(digits(a254103(n), 3)[1:]) # Indranil Ghosh, Jun 06 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Jun 03 2017
STATUS
approved