[go: up one dir, main page]

login
Search: a175505 -id:a175505
     Sort: relevance | references | number | modified | created      Format: long | short | data
Nonprimes q such that antiharmonic mean B(q) of the numbers k < q such that gcd(k, q) = 1 is integer, where B(q) = A053818(q) / A023896(q) = A175505(q) / A175506(q).
+20
20
1, 10, 22, 34, 46, 55, 58, 82, 85, 91, 94, 106, 110, 115, 118, 133, 142, 145, 166, 170, 178, 182, 187, 202, 205, 214, 217, 226, 230, 235, 247, 253, 259, 262, 265, 266, 274, 290, 295, 298, 301, 319, 334, 346, 355, 358, 374, 382, 391, 394, 403, 410, 415, 427
OFFSET
1,2
COMMENTS
Nonprimes q such that A175506(q) = 1. Subsequence of A179871. Union a(n) and A003627 = A179871. Corresponding values of B(q) in A179890.
LINKS
EXAMPLE
a(6) = 55 because B(55) = A053818(55) / A023896(55) = 40700 / 1100 = 37 (integer).
MATHEMATICA
f[n_] := 2 Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2)/(n*EulerPhi@n); Select[ Range@ 433, ! PrimeQ@# && IntegerQ@ f@# &] (* Robert G. Wilson v, Aug 02 2010 *)
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
EXTENSIONS
More terms from Robert G. Wilson v, Aug 02 2010
STATUS
approved
Values of antiharmonic mean B(q) of the numbers k < q such that gcd(k, q) = 1 is integer for nonprimes q from A179887, where B(q) = A053818(q) / A023896(q) = A175505(q) / A175506(q).
+20
20
1, 7, 15, 23, 31, 37, 39, 55, 57, 61, 63, 71, 73, 77, 79, 89, 95, 97, 111, 113, 119, 121, 125, 135, 137, 143, 145, 151, 153, 157, 165, 169, 173, 175, 177, 177, 183
OFFSET
1,2
FORMULA
a(n) = A175505(A003627(n)).
EXAMPLE
a(6) = 37 because for A179887(6) = 55 holds: B(55) = A053818(55)/A023896(55) = 40700/1100 = 37.
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
STATUS
approved
Subsequence of A179883 and A179872. Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).
+20
17
6, 7, 65, 66, 69, 70, 77, 78, 129, 130, 185, 186, 194, 195, 210, 211, 221, 222, 237, 238, 254, 255, 309, 310, 321, 322, 330, 331, 365, 366, 398, 399, 417, 418, 437, 438, 462, 463, 473, 474, 482, 483, 497, 498
OFFSET
1,1
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
STATUS
approved
Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.
+10
92
1, 1, 3, 4, 10, 6, 21, 16, 27, 20, 55, 24, 78, 42, 60, 64, 136, 54, 171, 80, 126, 110, 253, 96, 250, 156, 243, 168, 406, 120, 465, 256, 330, 272, 420, 216, 666, 342, 468, 320, 820, 252, 903, 440, 540, 506, 1081, 384, 1029, 500, 816, 624, 1378, 486, 1100, 672
OFFSET
1,3
COMMENTS
Sum of totatives of n, i.e., sum of integers up to n and coprime to n.
a(1) = 1, since 1 is coprime to any positive integer.
Row sums of A038566. - Wolfdieter Lang, May 03 2015
Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 19 2024
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
David M. Burton, Elementary Number Theory, p. 171.
James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2001, p. 163.
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
Geoffrey B. Campbell, Dirichlet summations and products over primes, Int. J. Math. Math. Sci. 16 92) (1993) 359. eq. (3.1)
David Zmiaikou, Origamis and permutation groups, Thesis, 2011. See p. 65.
FORMULA
a(n) = n*A023022(n) for n > 2.
a(n) = phi(n^2)/2 = n*phi(n)/2 = A002618(n)/2 if n > 1, a(1)=1. See the Apostol reference for this exercise.
a(n) = Sum_{1 <= k < n, gcd(k, n) = 1} k.
If n = p is a prime, a(p) = T(p-1) where T(k) is the k-th triangular number (A000217). - Robert G. Wilson v, Jul 31 2004
Equals A054521 * [1,2,3,...]. - Gary W. Adamson, May 20 2007
a(n) = A053818(n) * A175506(n) / A175505(n). - Jaroslav Krizek, Aug 01 2010
If m,n > 1 and gcd(m,n) = 1 then a(m*n) = 2*a(m)*a(n). - Thomas Ordowski, Nov 09 2014
G.f.: Sum_{n>=1} mu(n)*n*x^n/(1-x^n)^3, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 24 2015
G.f. A(x) satisfies A(x) = x/(1 - x)^3 - Sum_{k>=2} k * A(x^k). - Ilya Gutkovskiy, Sep 06 2019
For n > 1: a(n) = (n*A076512(n)/2)*A009195(n). - Jamie Morken, Dec 16 2019
Sum_{n>=1} 1/a(n) = 2 * A065484 - 1 = 3.407713... . - Amiram Eldar, Oct 09 2023
EXAMPLE
G.f. = x + x^2 + 3*x^3 + 4*x^4 + 10*x^5 + 6*x^6 + 21*x^7 + 16*x^8 + 27*x^9 + ...
a(12) = 1 + 5 + 7 + 11 = 24.
n = 40: The smallest positive reduced residue system modulo 40 is {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}. The sum is a(40) = 320. Average is 20.
MAPLE
A023896 := proc(n)
if n = 1 then
1;
else
n*numtheory[phi](n)/2 ;
end if;
end proc: # R. J. Mathar, Sep 26 2013
MATHEMATICA
a[ n_ ] = n/2*EulerPhi[ n ]; a[ 1 ] = 1; Table[a[n], {n, 56}]
a[ n_] := If[ n < 2, Boole[n == 1], Sum[ k Boole[1 == GCD[n, k]], { k, n}]]; (* Michael Somos, Jul 08 2014 *)
PROG
(PARI) {a(n) = if(n<2, n>0, n*eulerphi(n)/2)};
(PARI) A023896(n)=n*eulerphi(n)\/2 \\ about 10% faster. - M. F. Hasler, Feb 01 2021
(Haskell)
a023896 = sum . a038566_row -- Reinhard Zumkeller, Mar 04 2012
(Magma) [1] cat [n*EulerPhi(n)/2: n in [2..70]]; // Vincenzo Librandi, May 16 2015
(Python)
from sympy import totient
def A023896(n): return 1 if n == 1 else n*totient(n)//2 # Chai Wah Wu, Apr 08 2022
(SageMath)
def A023896(n): return 1 if n == 1 else n*euler_phi(n)//2
print([A023896(n) for n in range(1, 57)]) # Peter Luschny, Dec 03 2023
KEYWORD
nonn,easy,nice
EXTENSIONS
Typos in programs corrected by Zak Seidov, Aug 03 2010
Name and example edited by Wolfdieter Lang, May 03 2015
STATUS
approved
Generalized cuban primes: primes of the form x^2 + xy + y^2; or primes of the form x^2 + 3*y^2; or primes == 0 or 1 (mod 3).
(Formerly M2637)
+10
88
3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613
OFFSET
1,1
COMMENTS
Also, odd primes p such that -3 is a square mod p. - N. J. A. Sloane, Dec 25 2017
Equivalently, primes of the form p = (x^3 - y^3)/(x - y). If x=y+1 we get the cuban primes A002407, which is therefore a subsequence.
These are not to be confused with the Eisenstein primes, which are the primes in the ring of integers Z[w], where w = (-1+sqrt(-3))/2. The present sequence gives the rational primes which are also Eisenstein primes. - N. J. A. Sloane, Feb 06 2008
Also primes of the form x^2+3y^2 and, except for 3, x^2+xy+7y^2. See A140633. - T. D. Noe, May 19 2008
Conjecture: this sequence is Union(A002383,A162471). - Daniel Tisdale, Jul 04 2009
Primes p such that antiharmonic mean B(p) of the numbers k < p such that gcd(k, p) = 1 is not integer, where B(p) = A053818(p) / A023896(p) = A175505(p) / A175506(p) = (2p - 1) / 3. Primes p such that A175506(p) > 1. Subsequence of A179872. Union a(n) + A179891 = A179872. Example: a(6) = 37 because B(37) = A053818(37) / A023896(37) = A175505(37) / A175506(37) = 16206 / 666 = 73 / 3 (not integer). Cf. A179871, A179872, A179873, A179874, A179875, A179876, A179877, A179878, A179879, A179880, A179882, A179883, A179884, A179885, A179886, A179887, A179890, A179891, A003627, A034934. - Jaroslav Krizek, Aug 01 2010
Subsequence of Loeschian numbers, cf. A003136 and A024614; A088534(a(n)) > 0. - Reinhard Zumkeller, Oct 30 2011
Primes such that there exist a unique x, y, with 1 < x <= y < p, x + y == 1 (mod p) and x * y == 1 (mod p). - Jon Perry, Feb 02 2014
The prime factors of A002061. - Richard R. Forberg, Dec 10 2014
This sequence gives the primes p which solve s^2 == -3 (mod 4*p) (see Buell, Proposition 4.1., p. 50, for Delta = -3). p = 2 is not a solution. x^2 == -3 (mod 4) has solutions for all odd x. x^2 == -3 (mod p) has for odd primes p, not 3, the solutions of Legendre(-3|p) = +1 which are p == {1, 7} (mod 12). For p = 3 the representative solution is x = 0. Hence the solution of s^2 == -3 (mod 4*p) are the odd primes p = 3 and p == {1, 7} (mod 12) (or the primes p = 0, 1 (mod 3)). - Wolfdieter Lang, May 22 2021
REFERENCES
D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, p. 50.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 7.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Wagon, S. "Eisenstein Primes." Section 9.8 in Mathematica in Action. New York: W. H. Freeman, pp. 319-323, 1991.
LINKS
U. P. Nair, Elementary results on the binary quadratic form a^2+ab+b^2, arXiv:math/0408107 [math.NT], 2004.
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Eric Weisstein's World of Mathematics, Eisenstein Integer.
FORMULA
p == 0 or 1 (mod 3).
{3} UNION A002476. - R. J. Mathar, Oct 28 2008
MAPLE
select(isprime, [3, seq(6*k+1, k=1..1000)]); # Robert Israel, Dec 12 2014
MATHEMATICA
Join[{3}, Select[Prime[Range[150]], Mod[#, 3]==1&]] (* Harvey P. Dale, Aug 21 2021 *)
PROG
(PARI) forprime(p=2, 1e3, if(p%3<2, print1(p", "))) \\ Charles R Greathouse IV, Jun 16 2011
(Haskell)
a007645 n = a007645_list !! (n-1)
a007645_list = filter ((== 1) . a010051) $ tail a003136_list
-- Reinhard Zumkeller, Jul 11 2013, Oct 30 2011
CROSSREFS
Subsequence of A003136.
Subsequences include A002407, A002648, and A201477.
Apart from initial term, same as A045331.
Cf. A001479, A001480 (x and y such that a(n) = x^2 + 3y^2).
Primes in A003136 and A034017.
KEYWORD
nonn,easy
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 29 2013
STATUS
approved
a(n) = Sum_{k=1..n, gcd(n,k) = 1} k^2.
+10
33
1, 1, 5, 10, 30, 26, 91, 84, 159, 140, 385, 196, 650, 406, 620, 680, 1496, 654, 2109, 1080, 1806, 1650, 3795, 1544, 4150, 2756, 4365, 3164, 7714, 2360, 9455, 5456, 7370, 6256, 9940, 5196, 16206, 8778, 12324, 8560, 22140, 6972, 25585
OFFSET
1,3
COMMENTS
Equals row sums of triangle A143612. - Gary W. Adamson, Aug 27 2008
a(n) = A175505(n) * A023896(n) / A175506(n). For number n >= 1 holds B(n) = a(n) / A023896(n) = A175505(n) / A175506(n), where B(n) = antiharmonic mean of numbers k such that GCD(k, n) = 1 for k < n. - Jaroslav Krizek, Aug 01 2010
n does not divide a(n) iff n is a term in A316860, that is, either n is a power of 2 or n is a multiple of 3 and no prime factor of n is congruent to 1 mod 3. - Jianing Song, Jul 16 2018
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_2(n).
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #2.
LINKS
John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
P. G. Brown, Some comments on inverse arithmetic functions, Math. Gaz. 89 (516) (2005) 403-408.
Geoffrey B. Campbell, Dirichlet summations and products over primes, Int. J. Math. Math. Sci. 16 92) (1993) 359. eq. (3.1)
FORMULA
If n = p_1^e_1 * ... *p_r^e_r then a(n) = n^2*phi(n)/3 + (-1)^r*p_1*..._p_r*phi(n)/6.
a(n) = n^2*A000010(n)/3 + n*A023900(n)/6, n>1. [Brown]
a(n) = A000010(n)/3 * (n^2 + (-1)^A001221(n)*A007947(n)/2)) for n>=2. - Jaroslav Krizek, Aug 24 2010
G.f. A(x) satisfies: A(x) = x*(1 + x)/(1 - x)^4 - Sum_{k>=2} k^2 * A(x^k). - Ilya Gutkovskiy, Mar 29 2020
Sum_{k=1..n} a(k) ~ n^4 / (2*Pi^2). - Amiram Eldar, Dec 03 2023
MAPLE
A053818 := proc(n)
local a, k;
a := 0 ;
for k from 1 to n do
if igcd(k, n) = 1 then
a := a+k^2 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Sep 26 2013
MATHEMATICA
a[n_] := Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2); Array[a, 43] (* Robert G. Wilson v, Jul 01 2010 *)
a[1] = 1; a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (n^2/3) * Times @@ ((p - 1)*p^(e - 1)) + (n/6) * Times @@ (1 - p)]; Array[a, 100] (* Amiram Eldar, Dec 03 2023 *)
PROG
(PARI) a(n) = sum(k=1, n, k^2*(gcd(n, k) == 1)); \\ Michel Marcus, Jan 30 2016
(PARI) a(n) = {my(f = factor(n)); if(n == 1, 1, (n^2/3) * eulerphi(f) + (n/6) * prod(i = 1, #f~, 1 - f[i, 1])); } \\ Amiram Eldar, Dec 03 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 07 2000
STATUS
approved
Numbers h such that antiharmonic mean B(h) of the numbers k < h such that gcd(k, h) = 1 is integer.
+10
22
1, 2, 5, 10, 11, 17, 22, 23, 29, 34, 41, 46, 47, 53, 55, 58, 59, 71, 82, 83, 85, 89, 91, 94, 101, 106, 107, 110, 113, 115, 118, 131, 133, 137, 142, 145, 149, 166, 167, 170, 173, 178, 179, 182, 187, 191, 197, 202, 205, 214
OFFSET
1,2
COMMENTS
Numbers h such that B(h) = A053818(h) / A023896(h) = A175505(h) / A175506(h) is integer. Numbers h such that A175506(h) = 1. Complement of A179872. See A179873 (odd positive integers) for corresponding values A175505(a(n)). a(n) = union A003627 (primes of form 3n-1) and A179887.
LINKS
EXAMPLE
Example: a(9) = 29 because B(29) = A053818(29) / A023896(29) = 7714/406 = 19 (integer).
MATHEMATICA
B[n_] := Plus @@ ((ks = Select[Range[n], GCD[n, #] == 1 &])^2)/Plus @@ ks; Select[Range[215], IntegerQ[B[#]] &] (* Ivan Neretin, May 22 2015 *)
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
STATUS
approved
a(n) is the corresponding value of contraharmonic mean B(h) of numbers k such that gcd(k, h) = 1 (k < h) for numbers h from A179877(n) and A179878(n).
+10
21
1, 7, 15, 31, 39, 55, 71, 111, 119, 151, 175, 177, 231, 239, 255, 303, 311, 313, 319, 329, 335, 337, 345, 375, 391, 393, 479, 521, 559, 575, 591, 593, 601, 607, 623, 655, 657, 679, 777, 785, 791, 823, 855, 863, 871, 879, 889, 905, 911, 929, 937, 959, 961, 991
OFFSET
1,2
COMMENTS
Subsequence of A179873 and A179874.
It appears that for n >= 3, (4*A005384(n)+1)/3 is a subsequence. - Hilko Koning, Jul 27 2018
This happens for this subsequence of A179877: 10, 22, 46, 58, 82, 106, 166, 178, ... apparently "Semiprimes of form prime - 1" >= 10 (see A077065). - Michel Marcus, Jul 27 2018
FORMULA
a(n) = A175505(A179877(n)) / A175506(A179877(n));
a(n) = A175505(A179878(n)) / A175506(A179878(n)).
MATHEMATICA
{1}~Join~Select[Partition[Table[ContraharmonicMean@ Select[Range[n - 1], GCD[#, n] == 1 &], {n, 2, 1500}], 2, 1], And[IntegerQ@ First@ #, SameQ @@ #] &][[All, 1]] (* Michael De Vlieger, Jul 30 2018 *)
PROG
(PARI) lista(nn) = {vch = vector(nn, k, ch(k)); for (i=1, nn-1, if ((vch[i] == vch[i+1]) && !frac(vch[i]), print1(vch[i], ", ")); ); } \\ Michel Marcus, Jul 27 2018
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
EXTENSIONS
More terms from Michel Marcus, Jul 27 2018
STATUS
approved
Composites h such that antiharmonic mean B(h) of the numbers k < h such that gcd(k, h) = 1 is not integer.
+10
21
4, 6, 8, 9, 12, 14, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 56, 57, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 92, 93, 95, 96, 98, 99, 100, 102, 104, 105, 108, 111
OFFSET
1,1
COMMENTS
Composites h such that B(h) = A053818(h) / A023896(h) = A175505(h) / A175506(h) is not integer. Composites h such that A175506(h) > 1. Subsequence of A179872. Union a(n) + A007645 = A179872.
LINKS
EXAMPLE
a(6) = 14 because B(14) = A053818(14) / A023896(14) = 406/42 = 29/3 (not integer).
MATHEMATICA
f[n_] := 2 Plus @@ (Select[ Range@n, GCD[ #, n] == 1 &]^2)/(n*EulerPhi@n); Select[ Range@ 111, ! PrimeQ@# && ! IntegerQ@f@# &] (* Robert G. Wilson v, Aug 02 2010 *)
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010
EXTENSIONS
More terms from Robert G. Wilson v, Aug 02 2010
STATUS
approved
Numbers h such that h and h+1 have same antiharmonic mean of the numbers k < h such that gcd(k, h) = 1.
+10
19
1, 6, 10, 22, 46, 58, 65, 69, 77, 82, 106, 129, 166, 178, 185, 194, 210, 221, 226, 237, 254, 262, 265, 309, 321, 330, 346, 358, 365, 382, 398, 417, 437, 454, 462, 466, 469, 473, 478, 482, 493, 497, 502
OFFSET
1,2
COMMENTS
Corresponding values of numbers h+1 see A179876.
Numbers h such that A175505(h) = A175505(h+1).
numbers h such that A175506(h) = A175506(h+1).
Antiharmonic mean B(h) of numbers k such that gcd(k, h) = 1 for numbers h >= 1 and k < h = A053818(n) / A023896(n) = A175505(h) / A175506(h).
Conjecture: also numbers k such that mu(k) = 1 and mu(k+1) = -1, where mu is the Möbius function (tested on the first 10^4 terms). - Amiram Eldar, Mar 06 2021
LINKS
EXAMPLE
For n=3: a(3) = 10; B(10) = A175505(10) / A175506(10) = 7, B(11) = A175505(11) / A175506(11) = 7.
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Jul 30 2010, Jul 31 2010
STATUS
approved

Search completed in 0.014 seconds