[go: up one dir, main page]

login
Search: a157399 -id:a157399
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) gives the number of set partitions of {1,...,n} with maximum block length k.
+10
33
1, 1, 1, 1, 3, 1, 1, 9, 4, 1, 1, 25, 20, 5, 1, 1, 75, 90, 30, 6, 1, 1, 231, 420, 175, 42, 7, 1, 1, 763, 2016, 1015, 280, 56, 8, 1, 1, 2619, 10024, 6111, 1890, 420, 72, 9, 1, 1, 9495, 51640, 38010, 12978, 3150, 600, 90, 10, 1, 1, 35695, 276980, 244035, 91938, 24024, 4950, 825, 110, 11, 1
OFFSET
1,5
COMMENTS
Row sums are A000110 (Bell numbers). Second column is A001189 (Degree n permutations of order exactly 2).
From Peter Luschny, Mar 09 2009: (Start)
Partition product of Product_{j=0..n-1} ((k + 1)*j - 1) and n! at k = -1, summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A036040.
Same partition product with length statistic is A008277.
Diagonal a(A000217) = A000012.
Row sum is A000110. (End)
From Gary W. Adamson, Feb 24 2011: (Start)
Construct an array in which the n-th row is the partition function G(n,k), where G(n,1),...,G(n,6) = A000012, A000085, A001680, A001681, A110038, A148092, with the first few rows
1, 1, 1, 1, 1, 1, 1, ... = A000012
1, 2, 4, 10, 26, 76, 232, ... = A000085
1, 2, 5, 14, 46, 166, 652, ... = A001680
1, 2, 5, 15, 51, 196, 827, ... = A001681
1, 2 5 15 52 202 869, ... = A110038
1, 2, 5 15 52 203 876, ... = A148092
...
Rows tend to A000110, the Bell numbers. Taking finite differences from the top, then reorienting, we obtain triangle A080510.
The n-th row of the array is the eigensequence of an infinite lower triangular matrix with n diagonals of Pascal's triangle starting from the right and the rest zeros. (End)
LINKS
J. Riordan, Letter, 11/23/1970. See second page of letter.
FORMULA
E.g.f. for k-th column: exp(exp(x)*GAMMA(k, x)/(k-1)!-1)*(exp(x^k/k!)-1). - Vladeta Jovovic, Feb 04 2005
From Peter Luschny, Mar 09 2009: (Start)
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*...*a_n!),
f^a = (f_1/1!)^a_1*...*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-1) = (-1)^n. (End)
From Ludovic Schwob, Jan 15 2022: (Start)
T(2n,n) = C(2n,n)*(A000110(n)-1/2) for n>0.
T(n,m) = C(n,m)*A000110(n-m) for 2m > n > 0. (End)
EXAMPLE
T(4,3) = 4 since there are 4 set partitions with longest block of length 3: {{1},{2,3,4}}, {{1,3,4},{2}}, {{1,2,3},{4}} and {{1,2,4},{3}}.
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 9, 4, 1;
1, 25, 20, 5, 1;
1, 75, 90, 30, 6, 1;
1, 231, 420, 175, 42, 7, 1;
1, 763, 2016, 1015, 280, 56, 8, 1;
1, 2619, 10024, 6111, 1890, 420, 72, 9, 1;
...
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1) *n!/i!^j/(n-i*j)!/j!, j=0..n/i)))
end:
T:= (n, k)-> b(n, k) -b(n, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 20 2012
MATHEMATICA
<< DiscreteMath`NewCombinatorica`; Table[Length/@Split[Sort[Max[Length/@# ]&/@SetPartitions[n]]], {n, 12}]
(* Second program: *)
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1]*n!/i!^j/(n-i*j)!/j!, {j, 0, n/i}]]]; T[n_, k_] := b[n, k]-b[n, k-1]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Alois P. Heinz *)
CROSSREFS
Columns k=1..10 give: A000012 (for n>0), A001189, A229245, A229246, A229247, A229248, A229249, A229250, A229251, A229252. - Alois P. Heinz, Sep 17 2013
T(2n,n) gives A276961.
Take differences along rows of A229223. - N. J. A. Sloane, Jan 10 2018
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Mar 22 2003
STATUS
approved
A partition product with biggest-part statistic of Stirling_1 type (with parameter k = -2) as well as of Stirling_2 type (with parameter k = -2), (triangle read by rows).
+10
25
1, 1, 2, 1, 6, 6, 1, 24, 24, 24, 1, 80, 180, 120, 120, 1, 330, 1200, 1080, 720, 720, 1, 1302, 7770, 10920, 7560, 5040, 5040, 1, 5936, 57456, 102480, 87360, 60480, 40320, 40320, 1, 26784, 438984, 970704, 1103760, 786240, 544320, 362880, 362880
OFFSET
1,3
COMMENTS
Partition product of Product_{j=0..n-1} ((k+1)*j - 1) and n! at k = -2, summed over parts with equal biggest part (Stirling_2 type) as well as partition product of Product_{j=0..n-2} (k-n+j+2) and n! at k = -2 (Stirling_1 type).
It shares this property with the signless Lah numbers.
Underlying partition triangle is A130561.
Same partition product with length statistic is A105278.
Diagonal a(A000217) = A000142.
Row sum is A000262.
T(n,k) is the number of nilpotent elements in the symmetric inverse semigroup (partial bijections) on [n] having index k. Equivalently, T(n,k) is the number of directed acyclic graphs on n labeled nodes with every node having indegree and outdegree at most one and the longest path containing exactly k nodes. - Geoffrey Critzer, Nov 21 2021
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n.
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,...,a_n such that
1*a_1 + 2*a_2 + ... + n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = Product_{j=0..n-1} (-j-1)
OR f_n = Product_{j=0..n-2} (j-n) since both have the same absolute value n!.
E.g.f. of column k: exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)). - Alois P. Heinz, Oct 10 2015
EXAMPLE
Triangle starts:
1;
1, 2;
1, 6, 6;
1, 24, 24, 24;
1, 80, 180, 120, 120;
1, 330, 1200, 1080, 720, 720;
...
MAPLE
egf:= k-> exp((x^(k+1)-x)/(x-1))-exp((x^k-x)/(x-1)):
T:= (n, k)-> n!*coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Oct 10 2015
MATHEMATICA
egf[k_] := Exp[(x^(k+1)-x)/(x-1)] - Exp[(x^k-x)/(x-1)]; T[n_, k_] := n! * SeriesCoefficient[egf[k], {x, 0, n}]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 11 2015, after Alois P. Heinz *)
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009, Mar 14 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = -6] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 6, 1, 18, 66, 1, 144, 264, 1056, 1, 600, 4620, 5280, 22176, 1, 4950, 68640, 110880, 133056, 576576, 1, 26586, 639870, 3141600, 3259872, 4036032, 17873856, 1, 234528, 10759056, 69263040, 105557760, 113008896, 142990848
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -6,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134278.
Same partition product with length statistic is A049385.
Diagonal a(A000217) = A008548.
Row sum is A049412.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-5*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009
EXTENSIONS
Offset corrected by Peter Luschny, Mar 14 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = -5] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 5, 1, 15, 45, 1, 105, 180, 585, 1, 425, 2700, 2925, 9945, 1, 3075, 34650, 52650, 59670, 208845, 1, 15855, 308700, 1248975, 1253070, 1461915, 5221125, 1, 123515, 4475520, 23689575, 33972120, 35085960, 41769000
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -5,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134273.
Same partition product with length statistic is A049029.
Diagonal a(A000217) = A007696.
Row sum is A049120.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-4*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009
EXTENSIONS
Offset corrected by Peter Luschny, Mar 14 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = -4] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 4, 1, 12, 28, 1, 72, 112, 280, 1, 280, 1400, 1400, 3640, 1, 1740, 15120, 21000, 21840, 58240, 1, 8484, 126420, 401800, 382200, 407680, 1106560, 1, 57232, 1538208, 6370000, 8357440, 8153600, 8852480, 24344320, 1
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = -4,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A134149.
Same partition product with length statistic is A035469.
Diagonal a(A000217) = A007559.
Row sum is A049119.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(-3*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009, Mar 14 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = 1] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 1, 1, 1, 3, 3, 1, 9, 12, 15, 1, 25, 60, 75, 105, 1, 75, 330, 450, 630, 945, 1, 231, 1680, 3675, 4410, 6615, 10395, 1, 763, 9408, 30975, 41160, 52920, 83160, 135135, 1, 2619, 56952, 233415, 489510, 555660, 748440, 1216215
OFFSET
1,6
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 1,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143171.
Same partition product with length statistic is A001497.
Diagonal a(A000217) = A001147.
Row sum is A001515.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(2*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009, Mar 14 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = 2] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 2, 1, 6, 10, 1, 24, 40, 80, 1, 80, 300, 400, 880, 1, 330, 2400, 3600, 5280, 12320, 1, 1302, 15750, 47600, 55440, 86240, 209440, 1, 5936, 129360, 588000, 837760, 1034880, 1675520, 4188800, 1, 26784, 1146040, 5856480
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 2,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143172.
Same partition product with length statistic is A004747.
Diagonal a(A000217) = A008544.
Row sum is A015735.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(3*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009, Mar 14 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = 3] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 3, 1, 9, 21, 1, 45, 84, 231, 1, 165, 840, 1155, 3465, 1, 855, 8610, 13860, 20790, 65835, 1, 3843, 64680, 250635, 291060, 460845, 1514205, 1, 21819, 689136, 3969735, 6015240, 7373520, 12113640, 40883535, 1, 114075
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 3,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A143173.
Same partition product with length statistic is A000369.
Diagonal a(A000217) = A008545
Row sum is A016036.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(4*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = 4] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 4, 1, 12, 36, 1, 72, 144, 504, 1, 280, 1800, 2520, 9576, 1, 1740, 22320, 37800, 57456, 229824, 1, 8484, 182700, 864360, 1005480, 1608768, 6664896, 1, 57232, 2380896, 16546320, 26276544, 32175360, 53319168, 226606464
OFFSET
1,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 4,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144267.
Same partition product with length statistic is A011801.
Diagonal a(A000217) = A008546.
Row sum is A028575.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(5*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009
STATUS
approved
A partition product of Stirling_2 type [parameter k = 5] with biggest-part statistic (triangle read by rows).
+10
10
1, 1, 5, 1, 15, 55, 1, 105, 220, 935, 1, 425, 3300, 4675, 21505, 1, 3075, 47850, 84150, 129030, 623645, 1, 15855, 415800, 2323475, 2709630, 4365515, 415800, 2323475, 2709630, 4365515, 21827575, 1, 123515, 6394080, 51934575
OFFSET
0,3
COMMENTS
Partition product of prod_{j=0..n-1}((k + 1)*j - 1) and n! at k = 5,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144268.
Same partition product with length statistic is A013988.
Diagonal a(A000217) = A008543.
Row sum is A028844.
FORMULA
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(6*j - 1).
KEYWORD
easy,nonn,tabl
AUTHOR
Peter Luschny, Mar 09 2009, Mar 14 2009
STATUS
approved

Search completed in 0.030 seconds