_Peter Luschny (peter(AT)luschny.de), _, Mar 09 2009, Mar 14 2009
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
_Peter Luschny (peter(AT)luschny.de), _, Mar 09 2009, Mar 14 2009
A partition product of Stirling_2 type [parameter k = 1] with biggest-part statistic (triangle read by rows).
1, 1, 1, 1, 1, 3, 3, 1, 9, 12, 15, 1, 25, 60, 75, 105, 1, 75, 330, 450, 630, 945, 1, 231, 1680, 3675, 4410, 6615, 10395, 1, 763, 9408, 30975, 41160, 52920, 83160, 135135, 1, 2619, 56952, 233415, 489510, 555660, 748440, 1216215
1,6
Peter Luschny, <a href="http://www.luschny.de/math/seq/CountingWithPartitions.html"> Counting with Partitions</a>.
Peter Luschny, <a href="http://www.luschny.de/math/seq/stirling2partitions.html"> Generalized Stirling_2 Triangles</a>.
T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-1}(2*j - 1).
easy,nonn,tabl
Peter Luschny (peter(AT)luschny.de), Mar 09 2009, Mar 14 2009
approved