[go: up one dir, main page]

login
Search: a154714 -id:a154714
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = F[n]_n(2), main diagonal of fast-iteration function applied to 2.
+10
9
2, 4, 18, 590295810358705651712
OFFSET
0,1
COMMENTS
The next term is too large to include.
The fast-iteration (or extended Grzegorczyk hierarchy) function F[k]_n(x) is defined as follows:
F[k]_{n+1}(x) = (F[k]_n)^x(x) = F[k]_n(F[k]_n(...F[k]_n(x)) (with x iterations);
F[k]_0(x) = x+k.
The base case could be rewritten using n=1 rather than n=0. If so the definition would be:
F'[k]_n+1(x) = (F'[k]_n)^x(x);
F'[k]_1(x) = x+k.
Because of its clear definition, this function is a popular benchmark for large number functions.
FORMULA
For small values of n we have:
F[k]_0(x) = x+k;
F[k]_1(x) = x+kx = (k+1)x;
F[k]_2(x) = x(k+1)^x.
EXAMPLE
F[0]_0(2) = 2+0 = 2;
F[1]_1(2) = (1+1)2 = 4;
F[2]_2(2) = 2(2+1)^2 = 18;
F[3]_3(2) = F[3]_2(F[3]_2(2)) = F[3]_2(2(3+1)^2) = F[3]_2(32) = 32(3+1)^32 = 590295810358705651712.
MATHEMATICA
f[k_, 0, x_] := x + k; f[k_, n_, x_] := Nest[f[k, n - 1, # ]&, x, x]; Table[f[n, n, 2], {n, 0, 3}]
CROSSREFS
A154714 gives w_n(2) = F[1]_n(2).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Oct 08 2016
STATUS
approved
a(n) = f_n(2), with f_0(x) = x+5, f_n+1(x) = (f_n)^x(x).
+10
6
7, 12, 72, 7659889842507589786155370254176860349292085605349868961792
OFFSET
0,1
COMMENTS
Next term is too large to include.
This function is a particular instance of the fast-iteration hierarchy function F[k]_n(x). Here we have f_n(x) = F[5]_n(x). See A275000 for details and definitions and formulae.
FORMULA
.
MATHEMATICA
f[0, x_] := x + 5; f[n_, x_] := Nest[f[n - 1, # ]&, x, x]; Table[f[n, 2], {n, 0, 3}]
CROSSREFS
Cf. A154714(F[1]_n(2)), A275002(F[n]_3(2)), A275003(F[3]_n(x)), A275004(F[4]_n(x)), A275005(F[5]_n(x)), A275006(F[6]_n(x)), A275009(F[k]_n(2)).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Nov 09 2016
STATUS
approved
a(n) = f_n(2), with f_0(x) = x+3, f_n+1(x) = (f_n)^x(x).
+10
5
5, 8, 32, 590295810358705651712
OFFSET
0,1
REFERENCES
Next term is too large to include.
This function is a particular instance of the fast-iteration hierarchy function F[k]_n(x). Here we have f_n(x) = F[3]_n(x). See A275000 for details and definitions and formulae.
MATHEMATICA
f[0, x_] := x + 3; f[n_, x_] := Nest[f[n - 1, # ]&, x, x]; Table[f[n, 2], {n, 0, 3}]
CROSSREFS
A154714(F[1]_n(2)), A275002(F[n]_3(2)), A275004(F[4]_n(x)), A275005(F[5]_n(x)), A275006(F[6]_n(x)), A275009(F[k]_n(2)).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Nov 09 2016
STATUS
approved
a(n) = f_n(2), with f_0(x) = x+4, f_n+1(x) = (f_n)^x(x).
+10
5
6, 10, 50, 4440892098500626161694526672363281250
OFFSET
0,1
COMMENTS
Next term is too large to include.
This function is a particular instance of the fast-iteration hierarchy function F[k]_n(x). Here we have f_n(x) = F[4]_n(x). See A275000 for details and definitions and formulae.
MATHEMATICA
f[0, x_] := x + 4; f[n_, x_] := Nest[f[n - 1, # ]&, x, x]; Table[f[n, 2], {n, 0, 3}]
CROSSREFS
A154714(F[1]_n(2)), A275002(F[n]_3(2)), A275003(F[3]_n(x)), A275005(F[5]_n(x)), A275006(F[6]_n(x)), A275009(F[k]_n(2)).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Nov 09 2016
STATUS
approved
a(n) = f_n(2), with f_0(x) = x+6, f_n+1(x) = (f_n)^x(x).
+10
5
8, 14, 98, 6468953019249515982689295538200433621714406397809250801867790662783382919273856120002
OFFSET
0,1
COMMENTS
Next term is too large to include.
This function is a particular instance of the fast-iteration hierarchy function F[k]_n(x). Here we have f_n(x) = F[6]_n(x). See A275000 for details and definitions and formulae.
MATHEMATICA
f[0, x_] := x + 6; f[n_, x_] := Nest[f[n - 1, # ]&, x, x]; Table[f[n, 2], {n, 0, 3}]
CROSSREFS
Cf. A154714(F[1]_n(2)), A275002(F[n]_3(2)), A275003(F[3]_n(x)), A275004(F[4]_n(x)), A275005(F[5]_n(x)), A275009(F[k]_n(2)).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Nov 09 2016
STATUS
approved
Table of F[k]_n(2) with rows k >= 0 and columns 0 <= n <= 2.
+10
5
2, 2, 2, 3, 4, 8, 4, 6, 18, 5, 8, 32, 6, 10, 50, 7, 12, 72, 8, 14, 98, 9, 16, 128, 10, 18, 162, 11, 20, 200, 12, 22, 242, 13, 24, 288, 14, 26, 338, 15, 28, 392, 16, 30, 450, 17, 32, 512, 18, 34, 578, 19, 36, 648, 20, 38, 722, 21, 40, 800, 22, 42, 882, 23, 44, 968, 24, 46, 1058
OFFSET
0,1
COMMENTS
F[k]_n(x) is the fast-iteration function defined in A275000.
MATHEMATICA
f[k_, 0, x_] := x + k; f[k_, n_, x_] := Nest[f[k, n - 1, #] &, x, x];
Table[f[k, n, 2], {k, 0, 22}, {n, 0, 2} ]
CROSSREFS
A154714(F[1]_n(2)), A275002(F[n]_3(2)), A275003(F[3]_n(x)), A275004(F[4]_n(x)), A275005(F[5]_n(x)), A275006(F[6]_n(x)).
KEYWORD
nonn,tabf
AUTHOR
Natan Arie Consigli, Nov 09 2016
STATUS
approved
a(n) = f_n(2), with f_0(x) = x+2, f_n+1(x) = (f_n)^x(x).
+10
0
4, 6, 18, 6973568802
OFFSET
0,1
COMMENTS
Next term is too large to include.
This function is a particular instance of the fast-iteration hierarchy function F[k]_n(x). Here we have f_n(x) = F[2]_n(x). See A275000 for details and definitions and formulae.
MATHEMATICA
f[0, x_] := x + 2; f[n_, x_] := Nest[f[n - 1, # ]&, x, x]; Table[f[n, 2], {n, 0, 3}]
CROSSREFS
Cf. A275000(F[n]_n(x)), A154714 (F[1]_n(x)).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Oct 08 2016
STATUS
approved
Main diagonal of fast-iteration function applied to 2: a(n) = F'[n]_n(2), where F' is defined in A275000.
+10
0
0, 3, 6, 32, 4440892098500626161694526672363281250
OFFSET
0,2
CROSSREFS
Cf. A154714(F[1]_n(2)), A275000(F[n]_n(2)), A275002(F[n]_3(2)), A275003(F[3]_n(x)), A275004(F[4]_n(x)), A275005(F[5]_n(x)), A275006(F[6]_n(x)), A275009(F[k]_n(2)).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Nov 12 2016
STATUS
approved

Search completed in 0.011 seconds