OFFSET
0,1
COMMENTS
The next term is too large to include.
The fast-iteration (or extended Grzegorczyk hierarchy) function F[k]_n(x) is defined as follows:
F[k]_{n+1}(x) = (F[k]_n)^x(x) = F[k]_n(F[k]_n(...F[k]_n(x)) (with x iterations);
F[k]_0(x) = x+k.
The base case could be rewritten using n=1 rather than n=0. If so the definition would be:
F'[k]_n+1(x) = (F'[k]_n)^x(x);
F'[k]_1(x) = x+k.
Because of its clear definition, this function is a popular benchmark for large number functions.
LINKS
Googology Wiki, Fast Growing Hierarchy
Wikipedia, Fast-growing hierarchy.
FORMULA
For small values of n we have:
F[k]_0(x) = x+k;
F[k]_1(x) = x+kx = (k+1)x;
F[k]_2(x) = x(k+1)^x.
EXAMPLE
F[0]_0(2) = 2+0 = 2;
F[1]_1(2) = (1+1)2 = 4;
F[2]_2(2) = 2(2+1)^2 = 18;
F[3]_3(2) = F[3]_2(F[3]_2(2)) = F[3]_2(2(3+1)^2) = F[3]_2(32) = 32(3+1)^32 = 590295810358705651712.
MATHEMATICA
f[k_, 0, x_] := x + k; f[k_, n_, x_] := Nest[f[k, n - 1, # ]&, x, x]; Table[f[n, n, 2], {n, 0, 3}]
CROSSREFS
A154714 gives w_n(2) = F[1]_n(2).
KEYWORD
nonn
AUTHOR
Natan Arie Consigli, Oct 08 2016
STATUS
approved