# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a275000 Showing 1-1 of 1 %I A275000 #27 Jan 11 2020 15:57:47 %S A275000 2,4,18,590295810358705651712 %N A275000 a(n) = F[n]_n(2), main diagonal of fast-iteration function applied to 2. %C A275000 The next term is too large to include. %C A275000 The fast-iteration (or extended Grzegorczyk hierarchy) function F[k]_n(x) is defined as follows: %C A275000 F[k]_{n+1}(x) = (F[k]_n)^x(x) = F[k]_n(F[k]_n(...F[k]_n(x)) (with x iterations); %C A275000 F[k]_0(x) = x+k. %C A275000 The base case could be rewritten using n=1 rather than n=0. If so the definition would be: %C A275000 F'[k]_n+1(x) = (F'[k]_n)^x(x); %C A275000 F'[k]_1(x) = x+k. %C A275000 Because of its clear definition, this function is a popular benchmark for large number functions. %H A275000 Googology Wiki, Fast Growing Hierarchy %H A275000 Wikipedia, Fast-growing hierarchy. %F A275000 For small values of n we have: %F A275000 F[k]_0(x) = x+k; %F A275000 F[k]_1(x) = x+kx = (k+1)x; %F A275000 F[k]_2(x) = x(k+1)^x. %e A275000 F[0]_0(2) = 2+0 = 2; %e A275000 F[1]_1(2) = (1+1)2 = 4; %e A275000 F[2]_2(2) = 2(2+1)^2 = 18; %e A275000 F[3]_3(2) = F[3]_2(F[3]_2(2)) = F[3]_2(2(3+1)^2) = F[3]_2(32) = 32(3+1)^32 = 590295810358705651712. %t A275000 f[k_,0, x_] := x + k; f[k_, n_, x_] := Nest[f[k,n - 1, # ]&, x, x]; Table[f[n, n, 2], {n, 0, 3}] %Y A275000 A154714 gives w_n(2) = F[1]_n(2). %K A275000 nonn %O A275000 0,1 %A A275000 _Natan Arie Consigli_, Oct 08 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE