[go: up one dir, main page]

login
Search: a144138 -id:a144138
     Sort: relevance | references | number | modified | created      Format: long | short | data
Stella octangula numbers: a(n) = n*(2*n^2 - 1).
(Formerly M4932)
+10
38
0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381, 5474, 6735, 8176, 9809, 11646, 13699, 15980, 18501, 21274, 24311, 27624, 31225, 35126, 39339, 43876, 48749, 53970, 59551, 65504, 71841, 78574, 85715, 93276, 101269, 109706, 118599, 127960
OFFSET
0,3
COMMENTS
Also as a(n)=(1/6)*(12*n^3-6*n), n>0: structured hexagonal anti-diamond numbers (vertex structure 13) (Cf. A005915 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The only known square stella octangula number for n>1 is a(169) = 169*(2*169^2 - 1) = 9653449 = 3107^2. - Alexander Adamchuk, Jun 02 2008
Ljunggren proved that 9653449 = (13*239)^2 is the only square stella octangula number for n>1. See A229384 and the Wikipedia link. - Jonathan Sondow, Sep 30 2013
4*A007588 = A144138(ChebyshevU[3,n]). - Vladimir Joseph Stephan Orlovsky, Jun 30 2011
If A016813 is regarded as a regular triangle (with leading terms listed in A001844), a(n) provides the row sums of this triangle: 1, 5+9=14, 13+17+21=51 and so on. - J. M. Bergot, Jul 05 2013
Shares its digital root, A267017, with n*(n^2 + 1)/2 ("sum of the next n natural numbers" see A006003). - Peter M. Chema, Aug 28 2016
REFERENCES
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 51.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.
W. Ljunggren, Zur Theorie der Gleichung x^2 + 1 = Dy^4, Avh. Norske Vid. Akad. Oslo. I. 1942 (5): 27.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alexander Adamchuk and Vincenzo Librandi, Table of n, a(n) for n = 0..10000 [Alexander Adamchuk computed terms 0 - 169, Jun 02, 2008; Vincenzo Librandi computed the first 10000 terms, Aug 18 2011]
A. Bremner, R. Høibakk and D. Lukkassen, Crossed ladders and Euler’s quartic, Annales Mathematicae et Informaticae, 36 (2009) pp. 29-41. See p. 33.
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
Amelia Carolina Sparavigna, Cardano Formula and Some Figurate Numbers, Politecnico di Torino (Italy, 2021).
Eric Weisstein's World of Mathematics, Stella Octangula Number
FORMULA
G.f.: x*(1+10*x+x^2)/(1-x)^4.
a(n) = n*A056220(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n>3. - Harvey P. Dale, Sep 16 2011
From Ilya Gutkovskiy, Jul 02 2016: (Start)
E.g.f.: x*(1 + 6*x + 2*x^2)*exp(x).
Dirichlet g.f.: 2*zeta(s-3) - zeta(s-1). (End)
a(n) = A004188(n) + A135503(n). - Miquel Cerda, Dec 25 2016
MAPLE
A007588:=n->n*(2*n^2 - 1); seq(A007588(n), n=0..40); # Wesley Ivan Hurt, Mar 10 2014
MATHEMATICA
Table[ n(2n^2-1), {n, 0, 169} ] (* Alexander Adamchuk, Jun 02 2008 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 14, 51}, 50] (* Harvey P. Dale, Sep 16 2011 *)
PROG
(PARI) a(n)=n*(2*n^2-1)
(Magma) [n*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Aug 18 2011
(Python)
def A007588(n): return n*(2*n**2-1) # Chai Wah Wu, Feb 18 2022
CROSSREFS
Backwards differences give star numbers A003154: A003154(n)=a(n)-a(n-1).
1/12*t*(n^3-n)+ n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Cf. A001653 = Numbers n such that 2*n^2 - 1 is a square.
a(169) = (A229384(3)*A229384(4))^2.
KEYWORD
nonn,easy,nice
EXTENSIONS
In the formula given in the 1995 Encyclopedia of Integer Sequences, the second 2 should be an exponent.
STATUS
approved
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Chebyshev polynomial of the second kind U_{n}(x), evaluated at x=k.
+10
14
1, 1, 0, 1, 2, -1, 1, 4, 3, 0, 1, 6, 15, 4, 1, 1, 8, 35, 56, 5, 0, 1, 10, 63, 204, 209, 6, -1, 1, 12, 99, 496, 1189, 780, 7, 0, 1, 14, 143, 980, 3905, 6930, 2911, 8, 1, 1, 16, 195, 1704, 9701, 30744, 40391, 10864, 9, 0, 1, 18, 255, 2716, 20305, 96030, 242047, 235416, 40545, 10, -1
OFFSET
0,5
FORMULA
T(0,k) = 1, T(1,k) = 2 * k and T(n,k) = 2 * k * T(n-1,k) - T(n-2,k) for n > 1.
T(n, k) = Sum_{j=0..n} (2*k-2)^j * binomial(n+1+j,2*j+1). - Seiichi Manyama, Mar 03 2021
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
-1, 3, 15, 35, 63, 99, 143, ...
0, 4, 56, 204, 496, 980, 1704, ...
1, 5, 209, 1189, 3905, 9701, 20305, ...
0, 6, 780, 6930, 30744, 96030, 241956, ...
-1, 7, 2911, 40391, 242047, 950599, 2883167, ...
PROG
(PARI) T(n, k) = polchebyshev(n, 2, k);
matrix(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Jan 07 2019
(PARI) T(n, k) = sum(j=0, n, (2*k-2)^j*binomial(n+1+j, 2*j+1)); \\ Seiichi Manyama, Mar 03 2021
CROSSREFS
Mirror of A228161.
Columns 0-19 give A056594, A000027(n+1), A001353(n+1), A001109(n+1), A001090(n+1), A004189(n+1), A004191, A007655(n+2), A077412, A049660(n+1), A075843(n+1), A077421, A077423, A097309, A097311, A097313, A029548, A029547, A144128(n+1), A078987.
Main diagonal gives A323118.
Cf. A179943, A322836 (Chebyshev polynomial of the first kind).
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jan 06 2019
STATUS
approved
32*n^5 - 32*n^3 + 6*n.
+10
7
0, 6, 780, 6930, 30744, 96030, 241956, 526890, 1032240, 1866294, 3168060, 5111106, 7907400, 11811150, 17122644, 24192090, 33423456, 45278310, 60279660, 79015794, 102144120, 130395006, 164575620, 205573770, 254361744, 312000150, 379641756, 458535330, 550029480, 655576494
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(5,n).
LINKS
FORMULA
G.f.: x*(6 + 744*x + 2340*x^2 + 744*x^3 + 6*x^4)/(1 - x)^6.
a(n) = 2*n*(2*n-1)*(2*n+1)*(4*n^2-3).
MATHEMATICA
Table[32 n^5 - 32 n^3 + 6 n, {n, 0, 40}] (* or *) Table[ChebyshevU[5, n], {n, 0, 40}]
PROG
(Magma) [32*n^5-32*n^3+6*n: n in [0..40]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 29 2014
EXTENSIONS
Edited by Bruno Berselli, May 29 2014
STATUS
approved
64*n^6 - 80*n^4 + 24*n^2 - 1.
+10
7
-1, 7, 2911, 40391, 242047, 950599, 2883167, 7338631, 16451071, 33489287, 63202399, 112211527, 189447551, 306634951, 478821727, 724955399, 1068505087, 1538129671, 2168392031, 3000519367, 4083209599, 5473483847, 7237584991, 9451922311, 12204062207, 15593764999
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(6,n).
LINKS
FORMULA
G.f.: (-1 + 14*x + 2841*x^2 + 20196*x^3 + 20161*x^4 + 2862*x^5 + 7*x^6)/(1 - x)^7.
a(n) = (8*n^3-4*n^2-4*n+1)*(8*n^3+4*n^2-4*n-1).
MATHEMATICA
Table[64 n^6 - 80 n^4 + 24 n^2 - 1, {n, 0, 40}] (* or *) Table[ChebyshevU[6, n], {n, 0, 40}]
PROG
(Magma) [64*n^6-80*n^4+24*n^2-1: n in [0..40]];
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, May 29 2014
EXTENSIONS
Edited by Bruno Berselli, May 29 2014
STATUS
approved
128*n^7-192*n^5+80*n^3-8*n.
+10
2
0, 8, 10864, 235416, 1905632, 9409960, 34356048, 102213944, 262184896, 600940872, 1260879920, 2463542488, 4538833824, 7960697576, 13389885712, 21724469880, 34158739328, 52251130504, 78001833456, 113940720152, 163226239840, 229755926568, 318289163984, 434582852536
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(7,n).
LINKS
FORMULA
G.f.: (8*x + 10800*x^2 + 148728*x^3 + 326048*x^4 + 148728*x^5 + 10800*x^6 + 8*x^7)/(1-x)^8.
a(n) = 8*n*(2*n^2-1)*(8*n^4-8*n^2+1).
MATHEMATICA
Table[ChebyshevU[7, n], {n, 0, 30}] (* or *) Table[128 n^7 - 192 n^5 + 80 n^3 - 8 n, {n, 0, 30}]
PROG
(Magma) [128*n^7-192*n^5+80*n^3-8*n: n in [0..30]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 30 2014
STATUS
approved
256*n^8 - 448*n^6 + 240*n^4 - 40*n^2 + 1.
+10
2
1, 9, 40545, 1372105, 15003009, 93149001, 409389409, 1423656585, 4178507265, 10783446409, 25154396001, 54085723209, 108742564225, 206671502025, 374437978209, 651009141001, 1092011153409, 1775000307465, 2805897612385, 4326746846409, 6524966384001, 9644275432009
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(8,n).
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: (1 + 40500*x^2 + 1007440*x^3 + 4113054*x^4 + 4112928*x^5 + 1007524*x^6 + 40464*x^7 + 9*x^8)/(1 - x)^9.
a(n) = (2*n - 1)*(2*n + 1)*(8*n^3 - 6*n - 1) (8*n^3 - 6*n + 1).
MATHEMATICA
Table[ChebyshevU[8, n], {n, 0, 30}] (* or *) Table[256 n^8 - 448 n^6 + 240 n^4 - 40 n^2 + 1, {n, 0, 30}]
PROG
(Magma) [256*n^8-448*n^6+240*n^4-40*n^2+1: n in [0..30]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 30 2014
STATUS
approved
a(n) = 512*n^9 - 1024*n^7 + 672*n^5 - 160*n^3 + 10*n.
+10
2
0, 10, 151316, 7997214, 118118440, 922080050, 4878316860, 19828978246, 66593931344, 193501094490, 501827040100, 1187422368110, 2605282707576, 5365498355074, 10470873504140, 19508549760150, 34910198169760, 60297759323306, 100934312212404, 164302439443390
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(9,n).
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: x*(10 + 151216*x + 6484504*x^2 + 44954320*x^3 + 82614460*x^4 + 44954320*x^5 + 6484504*x^6 + 151216*x^7 + 10*x^8)/(1 - x)^10.
a(n) = 2*n*(4*n^2-2*n-1)*(4*n^2+2*n-1)*(16*n^4-20*n^2+5).
MAPLE
A242854:=n->512*n^9 - 1024*n^7 + 672*n^5 - 160*n^3 + 10*n: seq(A242854(n), n=0..30); # Wesley Ivan Hurt, Feb 04 2017
MATHEMATICA
Table[ChebyshevU[9, n], {n, 0, 20}] (* or *) Table[512 n^9 - 1024 n^7 + 672 n^5 - 160 n^3 + 10 n, {n, 0, 20}]
PROG
(Magma) [512*n^9-1024*n^7+672*n^5-160*n^3+10*n: n in [0..20]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 30 2014
STATUS
approved
1024*n^10 - 2304*n^8 + 1792*n^6 - 560*n^4 + 60*n^2 - 1.
+10
2
-1, 11, 564719, 46611179, 929944511, 9127651499, 58130412911, 276182038859, 1061324394239, 3472236254411, 10011386405999, 26069206375211, 62418042417599, 139296285729899, 292810020137711, 584605483663499, 1116034330278911, 2048348816684939, 3630829342034159
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(10,n).
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: (-1 + 22*x + 564543*x^2 + 40400040*x^3 + 448278942*x^4 + 1368702180*x^5 + 1368701718*x^6 + 448279272*x^7 + 40399875*x^8 + 564598*x^9 + 11*x^10)/(1 - x)^11.
a(n) = (32*n^5 - 16*n^4 - 32*n^3 +12*n^2 + 6*n - 1)*(32*n^5 + 16*n^4 - 32*n^3 -12*n^2 + 6*n + 1).
MATHEMATICA
Table[ChebyshevU[10, n], {n, 0, 20}] (* or *) Table[1024 n^10 - 2304 n^8 + 1792 n^6 - 560 n^4 + 60 n^2 - 1, {n, 0, 20}]
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {-1, 11, 564719, 46611179, 929944511, 9127651499, 58130412911, 276182038859, 1061324394239, 3472236254411, 10011386405999}, 20] (* Harvey P. Dale, Dec 10 2023 *)
PROG
(Magma) [1024*n^10-2304*n^8+1792*n^6-560*n^4+60*n^2-1: n in [0..20]];
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, May 30 2014
STATUS
approved

Search completed in 0.007 seconds