[go: up one dir, main page]

login
A210391
Number A(n,k) of semistandard Young tableaux over all partitions of n with maximal element <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
21
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 6, 1, 0, 1, 5, 16, 19, 9, 1, 0, 1, 6, 25, 44, 39, 12, 1, 0, 1, 7, 36, 85, 116, 69, 16, 1, 0, 1, 8, 49, 146, 275, 260, 119, 20, 1, 0, 1, 9, 64, 231, 561, 751, 560, 189, 25, 1, 0
OFFSET
0,8
LINKS
FindStat - Combinatorial Statistic Finder, Semistandard Young tableaux
Wikipedia, Young tableau
FORMULA
G.f. of column k: 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)).
A(n,k) = Sum_{i=0..k} C(k,i) * A138177(n,k-i). - Alois P. Heinz, Apr 06 2015
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 4, 9, 16, 25, 36, ...
0, 1, 6, 19, 44, 85, 146, ...
0, 1, 9, 39, 116, 275, 561, ...
0, 1, 12, 69, 260, 751, 1812, ...
0, 1, 16, 119, 560, 1955, 5552, ...
MAPLE
# First program:
h:= (l, k)-> mul(mul((k+j-i)/(1+l[i] -j +add(`if`(l[t]>=j, 1, 0)
, t=i+1..nops(l))), j=1..l[i]), i=1..nops(l)):
g:= proc(n, i, k, l)
`if`(n=0, h(l, k), `if`(i<1, 0, g(n, i-1, k, l)+
`if`(i>n, 0, g(n-i, i, k, [l[], i]))))
end:
A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second program:
gf:= k-> 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)):
A:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..12);
MATHEMATICA
(* First program: *)
h[l_, k_] := Product[Product[(k+j-i)/(1+l[[i]]-j + Sum[If[l[[t]] >= j, 1, 0], {t, i+1, Length[l]}]), {j, 1, l[[i]]}], {i, 1, Length[l]}]; g [n_, i_, k_, l_] := If[n == 0, h[l, k], If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a[n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten
(* second program: *)
gf[k_] := 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)); a[n_, k_] := Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
CROSSREFS
Columns k=0-8 give: A000007, A000012, A002620(n+2), A038163, A054498, A181477, A181478, A181479, A181480.
Main diagonal gives: A209673.
Sequence in context: A323224 A118340 A213276 * A071921 A003992 A337161
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Mar 20 2012
STATUS
approved