[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a122129 -id:a122129
     Sort: relevance | references | number | modified | created      Format: long | short | data
Coefficients of the '3rd-order' mock theta function psi(q)
+10
67
0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 19, 22, 24, 27, 31, 34, 37, 42, 46, 51, 57, 62, 68, 76, 83, 91, 101, 109, 120, 132, 143, 156, 171, 186, 202, 221, 239, 259, 283, 306, 331, 360, 388, 420, 455, 490, 529, 572, 616, 663, 716, 769, 827
OFFSET
0,5
COMMENTS
Number of partitions of n into odd parts such that if a number occurs as a part then so do all smaller positive odd numbers.
Number of ways to express n as a partial sum of 1 + [1,3] + [1,5] + [1,7] + [1,9] + .... E.g., a(6)=2 because we have 6 = 1+1+1+1+1+1 = 1+3+1+1. - Jon Perry, Jan 01 2004
Also number of partitions of n such that the largest part occurs exactly once and all the other parts occur exactly twice. Example: a(9)=4 because we have [9], [7,1,1], [5,2,2] and [3,2,2,1,1]. - Emeric Deutsch, Mar 08 2006
Number of partitions (d1,d2,...,dm) of n such that 0 < d1/1 < d2/2 < ... < dm/m. - Seiichi Manyama, Mar 17 2018
For Emeric Deutsch's comment above, (1) this appears to be an alternately equal case of A122130, (2) the ordered version (compositions) is A239327, (3) allowing any length gives A351006, (4) the even-length version is A351007. - Gus Wiseman, Feb 25 2022
REFERENCES
N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 55, Eq. (26.13).
Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355.
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 31.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
Leila A. Dragonette, Some asymptotic formulas for the mock theta series of Ramanujan, Trans. Amer. Math. Soc., 72 (1952) 474-500.
George N. Watson, The final problem: an account of the mock theta functions, J. London Math. Soc., 11 (1936) 55-80.
FORMULA
G.f.: psi(q) = Sum_{n>=1} q^(n^2) / ( (1-q)*(1-q^3)*...*(1-q^(2*n-1)) ).
G.f.: Sum_{k>=1} q^k*Product_{j=1..k-1} (1+q^(2*j)) (see the Fine reference, p. 58, Eq. (26,53)). - Emeric Deutsch, Mar 08 2006
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jun 09 2019
EXAMPLE
q + q^2 + q^3 + 2*q^4 + 2*q^5 + 2*q^6 + 3*q^7 + 3*q^8 + 4*q^9 + ...
From Seiichi Manyama, Mar 17 2018: (Start)
n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m)
--+--------------------------+-------------------------
1 | (1) | (1)
2 | (2) | (2)
3 | (3) | (3)
4 | (4) | (4)
| (1, 3) | (1, 3/2)
5 | (5) | (5)
| (1, 4) | (1, 2)
6 | (6) | (6)
| (1, 5) | (1, 5/2)
7 | (7) | (7)
| (1, 6) | (1, 3)
| (2, 5) | (2, 5/2)
8 | (8) | (8)
| (1, 7) | (1, 7/2)
| (2, 6) | (2, 3)
9 | (9) | (9)
| (1, 8) | (1, 4)
| (2, 7) | (2, 7/2)
| (1, 3, 5) | (1, 3/2, 5/3) (End)
MAPLE
f:=n->q^(n^2)/mul((1-q^(2*i+1)), i=0..n-1); add(f(i), i=1..6);
# second Maple program:
b:= proc(n, i) option remember; (s-> `if`(n>s, 0, `if`(n=s, 1,
b(n, i-1)+b(n-i, min(n-i, i-1)))))(i*(i+1)/2)
end:
a:= n-> `if`(n=0, 0, add(b(j, min(j, n-2*j-1)), j=0..iquo(n, 2))):
seq(a(n), n=0..80); # Alois P. Heinz, May 17 2018
MATHEMATICA
Series[Sum[q^n^2/Product[1-q^(2k-1), {k, 1, n}], {n, 1, 10}], {q, 0, 100}]
(* Second program: *)
b[n_, i_] := b[n, i] = Function[s, If[n > s, 0, If[n == s, 1, b[n, i - 1] + b[n - i, Min[n - i, i - 1]]]]][i*(i + 1)/2];
a[n_] := If[n==0, 0, Sum[b[j, Min[j, n-2*j-1]], {j, 0, Quotient[n, 2]}]];
Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jun 17 2018, after Alois P. Heinz *)
PROG
(PARI) { n=20; v=vector(n); for (i=1, n, v[i]=vector(2^(i-1))); v[1][1]=1; for (i=2, n, k=length(v[i-1]); for (j=1, k, v[i][j]=v[i-1][j]+1; v[i][j+k]=v[i-1][j]+2*i-1)); c=vector(n); for (i=1, n, for (j=1, 2^(i-1), if (v[i][j]<=n, c[v[i][j]]++))); c } \\ Jon Perry
(PARI) {a(n) = local(t); if(n<0, 0, t = 1 + O(x^n); polcoeff( sum(k=1, sqrtint(n), t *= x^(2*k-1) / (1 - x^(2*k-1)) + O(x^(n-(k-1)^2+1))), n))} /* Michael Somos, Sep 04 2007 */
CROSSREFS
Other '3rd-order' mock theta functions are at A000025, A053250, A053252, A053253, A053254, A053255.
Cf. A003475.
KEYWORD
nonn,easy
AUTHOR
Dean Hickerson, Dec 19 1999
EXTENSIONS
More terms from Emeric Deutsch, Mar 08 2006
STATUS
approved
Number of integer partitions of n into parts that are alternately equal and unequal.
+10
33
1, 1, 2, 1, 2, 2, 3, 2, 4, 2, 5, 4, 6, 4, 8, 5, 10, 6, 12, 8, 16, 9, 18, 12, 22, 14, 28, 16, 33, 20, 40, 24, 48, 28, 56, 34, 67, 40, 80, 46, 94, 56, 110, 64, 130, 75, 152, 88, 176, 102, 206, 118, 238, 138, 276, 159, 320, 182, 368, 210, 424, 242, 488, 276, 558
OFFSET
0,3
COMMENTS
Also partitions whose multiplicities are all 2's, except possibly for the last, which may be 1.
EXAMPLE
The a(1) = 1 through a(12) = 6 partitions (A..C = 10..12):
1 2 3 4 5 6 7 8 9 A B C
11 22 221 33 331 44 441 55 443 66
2211 332 442 551 552
3311 3322 33221 4422
4411 5511
332211
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Table[#[[i]]==#[[i+1]], {i, 1, Length[#]-1, 2}]&&And@@Table[#[[i]]!=#[[i+1]], {i, 2, Length[#]-1, 2}]&]], {n, 0, 30}]
CROSSREFS
The even-length ordered version is A003242, ranked by A351010.
The even-length case is A035457.
Without equalities we have A122135, opposite A122129, even-length A122134.
The non-strict version is A351004, opposite A351003, even-length A035363.
The opposite version is A351006, even-length A351007.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 31 2022
STATUS
approved
Number of integer partitions of n into parts that are alternately unequal and equal.
+10
31
1, 1, 1, 2, 3, 4, 4, 6, 7, 9, 10, 12, 14, 16, 18, 22, 25, 28, 31, 36, 40, 46, 50, 56, 64, 71, 78, 88, 96, 106, 118, 130, 143, 158, 172, 190, 209, 228, 248, 274, 298, 324, 354, 384, 418, 458, 494, 536, 584, 631, 683, 742, 800, 864, 936, 1010, 1088, 1176, 1264
OFFSET
0,4
EXAMPLE
The a(1) = 1 through a(11) = 12 partitions (A = 10, B = 11):
1 2 3 4 5 6 7 8 9 A B
21 31 32 42 43 53 54 64 65
211 41 51 52 62 63 73 74
311 411 61 71 72 82 83
322 422 81 91 92
511 611 522 433 A1
3221 711 622 533
4221 811 722
32211 5221 911
42211 4331
6221
52211
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Table[#[[i]]==#[[i+1]], {i, 2, Length[#]-1, 2}]&&And@@Table[#[[i]]!=#[[i+1]], {i, 1, Length[#]-1, 2}]&]], {n, 0, 30}]
CROSSREFS
Without equalities we have A122129, opposite A122135, even-length A351008.
The non-strict version is A351003, opposite A351004, even-length A351012.
The alternately equal and unequal version is A351005, even-length A035457.
The even-length case is A351007.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 31 2022
STATUS
approved
Expansion of f(x, -x^4) / phi(-x^2) in powers of x where f(, ) and phi() are Ramanujan theta functions.
+10
21
1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 26, 31, 40, 48, 60, 72, 89, 106, 130, 154, 186, 220, 264, 310, 370, 433, 512, 598, 704, 818, 958, 1110, 1293, 1494, 1734, 1996, 2308, 2650, 3052, 3496, 4014, 4584, 5248, 5980, 6825, 7760, 8834, 10020, 11380, 12882, 14594
OFFSET
0,3
COMMENTS
Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of integer partitions y of n such that y_i > y_{i+1} for all even i. For example, the a(1) = 1 through a(9) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(321) (331) (71) (81)
(2211) (421) (332) (432)
(3211) (431) (441)
(521) (531)
(3311) (621)
(4211) (3321)
(4311)
(5211)
The even-length case appears to be A122134.
The odd-length case is A351595.
The alternately unequal version appears to be A122129, even A351008, odd A122130.
The alternately equal version is A351003, even A351012, odd A000009.
The alternately equal and unequal version is A351005, even A035457, odd A351593.
The alternately unequal and equal version is A351006, even A351007, odd A053251.
(End)
REFERENCES
G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.5). MR0858826 (88b:11063)
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(d), p. 591.
LINKS
M. D. Hirschhorn, Some partition theorems of the Rogers-Ramanujan type, J. Combin. Theory Ser. A 27 (1979), no. 1, 33-37. MR0541341 (80j:05010). See Theorem 2. [From N. J. A. Sloane, Mar 19 2012]
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(x^2, x^8) / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 12 2016
Expansion of f(-x^3, -x^7) * f(-x^4, -x^16) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is Ramanujan's general theta function.
Euler transform of period 20 sequence [ 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, ...].
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k+1))).
Let f(n) = 1/Product_{k >= 0} (1-q^(20k+n)). Then g.f. is f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19); - N. J. A. Sloane, Mar 19 2012.
a(n) ~ (3 + sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016
EXAMPLE
G.f. = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 7*x^7 + 10*x^8 + ...
G.f. = q^9 + q^49 + 2*q^89 + 2*q^129 + 3*q^169 + 4*q^209 + 6*q^249 + ...
MAPLE
f:=n->1/mul(1-q^(20*k+n), k=0..20);
f(1)*f(2)*f(5)*f(6)*f(8)*f(9)*f(11)*f(12)*f(14)*f(15)*f(18)*f(19);
series(%, q, 200); seriestolist(%); # N. J. A. Sloane, Mar 19 2012
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, -x^5] QPochhammer[ x^4, -x^5] QPochhammer[-x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Nov 12 2016 *)
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+1))*(1 - x^(20*k+2))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+8))*(1 - x^(20*k+9))*(1 - x^(20*k+11))*(1 - x^(20*k+12))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+18))*(1 - x^(20*k+19)) ), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1) - 1) \2, x^(k^2 + k) / prod(i=1, 2*k+1, 1 - x^i, 1 + x * O(x^(n-k^2-k)))), n))};
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 21 2006
STATUS
approved
Expansion of Sum_{k>=0} x^(k^2+k)/((1-x)(1-x^2)...(1-x^(2k))).
+10
20
1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 18, 24, 28, 36, 42, 54, 62, 78, 91, 112, 130, 159, 184, 222, 258, 308, 356, 424, 488, 576, 664, 778, 894, 1044, 1196, 1389, 1590, 1838, 2098, 2419, 2754, 3162, 3596, 4114, 4668, 5328, 6032, 6864, 7760, 8806, 9936, 11252
OFFSET
0,5
COMMENTS
Generating function arises naturally in Rodney Baxter's solution of the Hard Hexagon Model according to George Andrews.
In Watson 1937 page 275 he writes "Psi_0(q^{1/2},q) = prod_1^oo (1+q^{2n}) G(-q^2)" so this is the expansion in powers of q^2. - Michael Somos, Jun 29 2015
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
From Gus Wiseman, Feb 26 2022: (Start)
Conjecture: Also the number of even-length integer partitions y of n such that y_i != y_{i+1} for all even i. For example, the a(2) = 1 through a(9) = 7 partitions are:
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(51) (61) (62) (72)
(2211) (3211) (71) (81)
(3311) (3321)
(4211) (4311)
(5211)
This appears to be the even-length version of A122135.
The odd-length version is A351595.
(End)
REFERENCES
G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, 1999; Exercise 6(c), p. 591.
G. E. Andrews, q-series, CBMS Regional Conference Series in Mathematics, 66, Amer. Math. Soc. 1986, see p. 8, Eq. (1.6). MR0858826 (88b:11063)
LINKS
Mircea Merca, From a Rogers's identity to overpartitions, Periodica Mathematica Hungarica, Vol. 75, issue 2, 172-179, 2017.
G. N. Watson The Mock Theta Functions (2) Proceedings of the London Mathematical Society, s2-42: 274-304, 1937.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 20 sequence [ 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, ...].
Expansion of f(x^4, x^6) / f(-x^2, -x^3) in powers of x where f(, ) is the Ramanujan general theta function. - Michael Somos, Jun 29 2015
Expansion of f(-x^2, x^3) / phi(-x^2) in powers of x where phi() is a Ramanujan theta function. - Michael Somos, Jun 29 2015
Expansion of G(-x) / chi(-x) in powers of x where chi() is a Ramanujan theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jun 29 2015
G.f.: Sum_{k>=0} x^(k^2 + k) / ((1 - x) * (1 - x^2) * ... * (1 - x^(2*k))).
Expansion of f(-x, -x^9) * f(-x^8, -x^12) / ( f(-x) * f(-x^20) ) in powers of x where f(, ) is the Ramanujan general theta function.
a(n) = number of partitions of n into parts that are each either == 2, 3, ..., 7 (mod 20) or == 13, 14, ..., 18 (mod 20). - Michael Somos, Jun 29 2015 [corrected by Vaclav Kotesovec, Nov 12 2016]
a(n) ~ (3 - sqrt(5))^(1/4) * exp(Pi*sqrt(2*n/5)) / (4*sqrt(5)*n^(3/4)). - Vaclav Kotesovec, Nov 12 2016
EXAMPLE
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = q + q^81 + q^121 + 2*q^161 + 2*q^201 + 4*q^241 + 4*q^281 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k^2 + k) / QPochhammer[ x, x, 2 k], {k, 0, (Sqrt[ 4 n + 1] - 1) / 2}], {x, 0, n}]]; (* Michael Somos, Jun 29 2015 *)
a[ n_] := SeriesCoefficient [ 1 / (QPochhammer[ x^4, -x^5] QPochhammer[ -x, -x^5] QPochhammer[ x, x^2]), {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, -x^5] QPochhammer[ -x^3, -x^5] QPochhammer[ -x^5] / EllipticTheta[ 4, 0, x^2], {x, 0, n}]; (* Michael Somos, Jun 29 2015 *)
nmax = 50; CoefficientList[Series[Product[1/((1 - x^(20*k+2))*(1 - x^(20*k+3))*(1 - x^(20*k+4))*(1 - x^(20*k+5))*(1 - x^(20*k+6))*(1 - x^(20*k+7))*(1 - x^(20*k+13))*(1 - x^(20*k+14))*(1 - x^(20*k+15))*(1 - x^(20*k+16))*(1 - x^(20*k+17)) *(1 - x^(20*k+18))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 12 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n + 1) - 1)\2, x^(k^2 + k) / prod(i=1, 2*k, 1 - x^i, 1 + x * O(x^(n -k^2-k)))), n))};
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 21 2006, Oct 10 2007
STATUS
approved
Number of integer compositions of n into parts that are alternately equal and unequal.
+10
19
1, 1, 2, 1, 3, 3, 5, 5, 9, 7, 17, 14, 28, 25, 49, 42, 87, 75, 150, 132, 266, 226, 466, 399, 810, 704, 1421, 1223, 2488, 2143, 4352, 3759, 7621, 6564, 13339, 11495, 23339, 20135, 40852, 35215, 71512, 61639, 125148, 107912, 219040, 188839, 383391, 330515, 670998
OFFSET
0,3
LINKS
FORMULA
G.f.: (1 + Sum_{k>0} (x^k)/(1 + x^(2*k)))/(1 - Sum_{k>0} (x^(2*k))/(1 + x^(2*k))). - John Tyler Rascoe, May 28 2024
EXAMPLE
The a(1) = 1 through a(8) = 9 compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (22) (113) (33) (115) (44)
(112) (221) (114) (223) (116)
(1122) (331) (224)
(2211) (11221) (332)
(1133)
(3311)
(22112)
(112211)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]==#[[i+1]], {i, 1, Length[#]-1, 2}]&&And@@Table[#[[i]]!=#[[i+1]], {i, 2, Length[#]-1, 2}]&]], {n, 0, 15}]
PROG
(PARI)
C_x(N) = {my(x='x+O('x^N), h=(1+sum(k=1, N, (x^k)/(1+x^(2*k))))/(1-sum(k=1, N, (x^(2*k))/(1+x^(2*k))))); Vec(h)}
C_x(50) \\ John Tyler Rascoe, May 28 2024
CROSSREFS
The even-length version is A003242, ranked by A351010, partitions A035457.
Without equal relations we have A016116, equal only A001590 (apparently).
The version for partitions is A351005.
The opposite version is A357644, partitions A351006.
A011782 counts compositions.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357645 counts compositions by half-alternating sum, skew A357646.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 12 2022
EXTENSIONS
More terms from Alois P. Heinz, Oct 12 2022
STATUS
approved
Number of integer compositions of n into parts that are alternately unequal and equal.
+10
19
1, 1, 1, 3, 4, 7, 8, 13, 17, 25, 30, 44, 58, 77, 98, 142, 176, 245, 311, 426, 548, 758, 952, 1319, 1682, 2308, 2934, 4059, 5132, 7087, 9008, 12395, 15757, 21728, 27552, 38019, 48272, 66515, 84462, 116467, 147812, 203825, 258772, 356686, 452876, 624399, 792578
OFFSET
0,4
LINKS
EXAMPLE
The a(1) = 1 through a(7) = 13 compositions:
(1) (2) (3) (4) (5) (6) (7)
(12) (13) (14) (15) (16)
(21) (31) (23) (24) (25)
(211) (32) (42) (34)
(41) (51) (43)
(122) (411) (52)
(311) (1221) (61)
(2112) (133)
(322)
(511)
(2113)
(3112)
(12211)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], And@@Table[#[[i]]==#[[i+1]], {i, 2, Length[#]-1, 2}]&&And@@Table[#[[i]]!=#[[i+1]], {i, 1, Length[#]-1, 2}]&]], {n, 0, 10}]
CROSSREFS
Without equal relations we have A000213, equal only A027383.
Even-length opposite: A003242, ranked by A351010, partitions A035457.
The version for partitions is A351006.
The opposite version is A357643, partitions A351005.
A011782 counts compositions.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357645 counts compositions by half-alternating sum, skew A357646.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 14 2022
EXTENSIONS
More terms from Alois P. Heinz, Oct 19 2022
STATUS
approved
Number of integer partitions y of n such that y_i = y_{i+1} for all even i.
+10
18
1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 28, 36, 42, 51, 62, 75, 88, 106, 124, 147, 173, 202, 236, 278, 320, 371, 431, 497, 572, 661, 756, 867, 993, 1132, 1291, 1474, 1672, 1898, 2155, 2439, 2756, 3117, 3512, 3957, 4458, 5008, 5624, 6316, 7072, 7919, 8862, 9899
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(7) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (311) (51) (61)
(1111) (2111) (222) (322)
(11111) (411) (511)
(3111) (2221)
(21111) (4111)
(111111) (31111)
(211111)
(1111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Table[#[[i]]==#[[i+1]], {i, 2, Length[#]-1, 2}]&]], {n, 0, 10}]
CROSSREFS
The ordered version (compositions) is A027383.
The version for unequal instead of equal is A122135, even-length A351008.
For odd instead of even indices we have A351004, even-length A035363.
Requiring inequalities at odd positions gives A351006, even-length A351007.
The even-length case is A351012.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 31 2022
STATUS
approved
Number of even-length integer partitions of n into parts that are alternately unequal and equal.
+10
17
1, 0, 0, 1, 1, 2, 2, 3, 4, 5, 5, 7, 8, 9, 10, 13, 14, 16, 18, 20, 23, 27, 28, 32, 37, 40, 44, 51, 54, 60, 67, 73, 81, 90, 96, 107, 118, 127, 139, 154, 166, 181, 198, 213, 232, 256, 273, 297, 325, 348, 377, 411, 440, 476, 516, 555, 598, 647, 692, 746, 807
OFFSET
0,6
COMMENTS
These are partitions whose multiplicities begin with a 1, are followed by any number of 2's, and end with another 1.
EXAMPLE
The a(3) = 1 through a(15) = 13 partitions (A..E = 10..14):
21 31 32 42 43 53 54 64 65 75 76 86 87
41 51 52 62 63 73 74 84 85 95 96
61 71 72 82 83 93 94 A4 A5
3221 81 91 92 A2 A3 B3 B4
4221 5221 A1 B1 B2 C2 C3
4331 4332 C1 D1 D2
6221 5331 5332 5441 E1
7221 6331 6332 5442
8221 7331 6441
9221 7332
8331
A221
433221
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], EvenQ[Length[#]]&&And@@Table[#[[i]]==#[[i+1]], {i, 2, Length[#]-1, 2}]&&And@@Table[#[[i]]!=#[[i+1]], {i, 1, Length[#]-1, 2}]&]], {n, 0, 30}]
CROSSREFS
The alternately equal and unequal version is A035457, any length A351005.
This is the even-length case of A351006, odd-length A053251.
Without equalities we have A351008, any length A122129, opposite A122135.
Without inequalities we have A351012, any length A351003, opposite A351004.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 31 2022
STATUS
approved
Alternately constant partitions. Number of integer partitions y of n such that y_i = y_{i+1} for all odd i.
+10
14
1, 1, 2, 2, 3, 3, 5, 4, 7, 7, 10, 9, 15, 13, 21, 19, 28, 26, 40, 35, 54, 49, 72, 64, 97, 87, 128, 115, 167, 151, 220, 195, 284, 256, 366, 328, 469, 421, 598, 537, 757, 682, 959, 859, 1204, 1085, 1507, 1354, 1880, 1694, 2338, 2104, 2892, 2609, 3574, 3218, 4394
OFFSET
0,3
COMMENTS
These are partitions of n with all even multiplicities (or run-lengths), except possibly the last.
EXAMPLE
The a(1) = 1 through a(9) = 7 partitions:
1 2 3 4 5 6 7 8 9
11 111 22 221 33 331 44 333
1111 11111 222 22111 332 441
2211 1111111 2222 22221
111111 3311 33111
221111 2211111
11111111 111111111
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Table[#[[i]]==#[[i+1]], {i, 1, Length[#]-1, 2}]&]], {n, 0, 30}]
CROSSREFS
The ordered version (compositions) is A016116.
The even-length case is A035363.
A reverse version is A096441, both A349060.
The version for unequal instead of equal is A122129, even-length A351008.
The version for even instead of odd indices is A351003, even-length A351012.
The strict version is A351005, opposite A351006, even-length A035457.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 31 2022
STATUS
approved

Search completed in 0.016 seconds