[go: up one dir, main page]

login
A101417
Number of partitions of n into parts without powers of 2.
18
1, 0, 0, 1, 0, 1, 2, 1, 1, 3, 3, 3, 6, 5, 6, 10, 9, 12, 17, 17, 22, 28, 30, 37, 48, 52, 62, 78, 86, 103, 127, 141, 166, 201, 227, 266, 317, 358, 417, 492, 560, 647, 757, 860, 991, 1153, 1309, 1503, 1738, 1971, 2257, 2594, 2941, 3356, 3843, 4351, 4948, 5644, 6382, 7240
OFFSET
0,7
LINKS
FORMULA
G.f.: Product_{j>=1} (1-x^(2^j)) / Product_{i>=2} (1-x^i). - Emeric Deutsch, Mar 29 2006
EXAMPLE
a(12) = #{3+3+3+3, 6+3+3, 6+6, 7+5, 9+3, 12} = 6.
From Gus Wiseman, Jan 07 2019: (Start)
The a(3) = 1 through a(14) = 5 integer partitions (A = 10, ..., E = 14):
(3) (5) (6) (7) (53) (9) (A) (B) (C) (D) (E)
(33) (63) (55) (65) (66) (76) (77)
(333) (73) (533) (75) (A3) (95)
(93) (553) (B3)
(633) (733) (653)
(3333) (5333)
(End)
MAPLE
g:= product(1-x^(2^j), j=0..15)/product(1-x^i, i=1..75): gser:= series(g, x=0, 62): seq(coeff(gser, x, n), n=0..59); # Emeric Deutsch, Mar 29 2006
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@Not/@IntegerQ/@Log[2, #]&]], {n, 20}] (* Gus Wiseman, Jan 07 2019 *)
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 16 2005
STATUS
approved