[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253655
Number of monic irreducible polynomials of degree 6 over GF(prime(n)).
1
9, 116, 2580, 19544, 295020, 804076, 4022064, 7839780, 24670536, 99133020, 147912160, 427612404, 791672280, 1053546956, 1796518224, 3694034916, 7030054140, 8586690620, 15076346164, 21349986840, 25222305336, 40514492720, 54489965796, 82830096360, 138828513824, 176919851700
OFFSET
1,1
LINKS
FORMULA
a(n) = (p^6 - p^3 - p^2 + p)/6, where p = prime(n).
EXAMPLE
For n=1 the a(1) = 9 irreducible monic polynomials of degree 6 over GF(2) are
x^6+x^5+1, x^6+x^3+1, x^6+x^5+x^4+x^2+1, x^6+x^5+x^3+x^2+1, x^6+x+1, x^6+x^5+x^4+x+1, x^6+x^4+x^3+x+1, x^6+x^5+x^2+x+1, x^6+x^4+x^2+x+1.
MAPLE
f:= p-> (p^6 - p^3 - p^2 + p)/6:
seq(f(ithprime(i)), i=1..100); # Robert Israel, Jan 07 2015
MATHEMATICA
Table[(Prime[n]^6 - Prime[n]^3 - Prime[n]^2 + Prime[n]) / 6, {n, 1, 30}] (* Vincenzo Librandi, Jan 08 2015 *)
PROG
(Magma) [(p^6 - p^3 - p^2 + p) div 6: p in PrimesUpTo(110)]; // Vincenzo Librandi, Jan 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert Israel, Jan 07 2015
STATUS
approved