[go: up one dir, main page]

login
Search: a126119 -id:a126119
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f.: sqrt(1+2*x)/(1-2*x).
+10
3
1, 3, 11, 69, 537, 5475, 64755, 916965, 14536305, 263680515, 5239150875, 115916048325, 2768235849225, 72290366223075, 2016224400665475, 60700190066641125, 1936215798778886625, 66023235942444655875, 2370503834057244760875, 90300788789652000685125, 3603830757053442135845625
OFFSET
0,2
COMMENTS
Old name: Numerators of sequence of fractions with e.g.f. sqrt(1+x)/(1-x).
Denominators are successive powers of 2.
LINKS
FORMULA
b(n) = a(n)/n! satisfies b(n) = (3*b(n-1) + 2*(2*n-3)*b(n-2))/n, b(0)=1, b(1)=3. - Sergei N. Gladkovskii, Jul 22 2012, corrected by Robert Israel, Mar 12 2018
D-finite with recurrence: a(n+2) = (2*(n+1))*(1+2*n)*a(n)+3*a(n+1). - Robert Israel, Mar 12 2018
E.g.f.: sqrt(1+2*x)/(1-2*x). - Sergei N. Gladkovskii, Jul 22 2012
EXAMPLE
The fractions are 1, 3/2, 11/4, 69/8, 537/16, 5475/32, 64755/64, 916965/128, ...
MAPLE
f:= gfun:-rectoproc({-2*(n+1)*(1+2*n)*a(n)-3*a(n+1)+a(n+2), a(0)=1, a(1)=3}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 12 2018
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sqrt[1+2x]/(1-2x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Sep 21 2018 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 22 2007
EXTENSIONS
Better name by Sergei N. Gladkovskii, Jul 22 2012
Edited by Robert Israel, Mar 12 2018
STATUS
approved
Numerators of sequence of fractions with e.g.f. sqrt(1+x)/(1-x)^2.
+10
1
1, 5, 31, 255, 2577, 31245, 439695, 7072695, 127699425, 2562270165, 56484554175, 1358576240175, 35374065613425, 992016072172125, 29792674421484975, 954480422711190375, 32479589325536978625, 1170329273010701929125, 44502357662442514209375, 1781390379962467540641375
OFFSET
0,2
COMMENTS
Denominators are successive powers of 2.
LINKS
FORMULA
E.g.f.: 1/G(0) where G(k) = 1 - 4*x/(1 + x/(1 - x - (2*k+1)/( 2*k+1 - 4*(k+1)*x/G(k+1)))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Jul 28 2012
From Benedict W. J. Irwin, May 19 2016: (Start)
E.g.f.: sqrt(1+2*x)/(1-2*x)^2.
a(n) = (-1)^(n+1)*2^(n-1)*(n-3/2)!*2F1(2,-n;(3/2)-n;-1)/sqrt(Pi).
(End)
D-finite with recurrence a(n) -5*a(n-1) -2*(2*n-1)*(n-1)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
EXAMPLE
The fractions are 1, 5/2, 31/4, 255/8, 2577/16, 31245/32, 439695/64, ...
MATHEMATICA
With[{nn=20}, Numerator[CoefficientList[Series[Sqrt[1+x]/(1-x)^2, {x, 0, nn}], x] Range[0, nn]!]] (* Harvey P. Dale, Jan 29 2016 *)
PROG
(PARI) x='x+O('x^25); Vec(serlaplace(sqrt(1+2*x)/(1-2*x)^2)) \\ G. C. Greubel, May 25 2017
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 22 2007
STATUS
approved

Search completed in 0.007 seconds