[go: up one dir, main page]

login
A126115
E.g.f.: sqrt(1+2*x)/(1-2*x).
3
1, 3, 11, 69, 537, 5475, 64755, 916965, 14536305, 263680515, 5239150875, 115916048325, 2768235849225, 72290366223075, 2016224400665475, 60700190066641125, 1936215798778886625, 66023235942444655875, 2370503834057244760875, 90300788789652000685125, 3603830757053442135845625
OFFSET
0,2
COMMENTS
Old name: Numerators of sequence of fractions with e.g.f. sqrt(1+x)/(1-x).
Denominators are successive powers of 2.
LINKS
FORMULA
b(n) = a(n)/n! satisfies b(n) = (3*b(n-1) + 2*(2*n-3)*b(n-2))/n, b(0)=1, b(1)=3. - Sergei N. Gladkovskii, Jul 22 2012, corrected by Robert Israel, Mar 12 2018
D-finite with recurrence: a(n+2) = (2*(n+1))*(1+2*n)*a(n)+3*a(n+1). - Robert Israel, Mar 12 2018
E.g.f.: sqrt(1+2*x)/(1-2*x). - Sergei N. Gladkovskii, Jul 22 2012
EXAMPLE
The fractions are 1, 3/2, 11/4, 69/8, 537/16, 5475/32, 64755/64, 916965/128, ...
MAPLE
f:= gfun:-rectoproc({-2*(n+1)*(1+2*n)*a(n)-3*a(n+1)+a(n+2), a(0)=1, a(1)=3}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Mar 12 2018
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Sqrt[1+2x]/(1-2x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Sep 21 2018 *)
CROSSREFS
Sequence in context: A342370 A345094 A074504 * A342057 A018193 A121945
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Mar 22 2007
EXTENSIONS
Better name by Sergei N. Gladkovskii, Jul 22 2012
Edited by Robert Israel, Mar 12 2018
STATUS
approved