[go: up one dir, main page]

login
Search: a116655 -id:a116655
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of permutation groups of degree n (or, number of distinct subgroups of symmetric group S_n, counting conjugates as distinct).
(Formerly M1690)
+10
16
1, 1, 2, 6, 30, 156, 1455, 11300, 151221, 1694723, 29594446, 404126228, 10594925360, 175238308453, 5651774693595, 117053117995400, 5320744503742316, 125889331236297288, 7598016157515302757
OFFSET
0,3
COMMENTS
Labeled version of A000638.
L. Pyber shows c^(n^2(1+o(1))) <= a(n) <= d^(n^2(1+o(1))), c=2^(1/16), d=24^(1/6); conjectures lower bound is accurate.
REFERENCES
C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Piotr Graczyk, Hideyuki Ishi, Kołodziejek Bartosz, Hélène Massam, Model selection in the space of Gaussian models invariant by symmetry, arXiv:2004.03503 [math.ST], 2020.
D. Holt, Enumerating subgroups of the symmetric group, in Computational Group Theory and the Theory of Groups, II, edited by L.-C. Kappe, A. Magidin and R. Morse. AMS Contemporary Mathematics book series, vol. 511, pp. 33-37. [Annotated copy]
J. Labelle and Y. N. Yeh, The relation between Burnside rings and combinatorial species, J. Combin. Theory, A 50 (1989), 269-284.
L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8.
L. Pyber, Enumerating Finite Groups of Given Order, Ann. Math. 137 (1993), 203-220.
N. J. A. Sloane, Transforms
Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman, Grokking Group Multiplication with Cosets, arXiv:2312.06581 [cs.LG], 2023. See footnote, p. 25.
FORMULA
Exponential transform of A116655. Binomial transform of A116693. - Christian G. Bower, Feb 23 2006
PROG
(Magma) n := 5; &+[ Length(s):s in SubgroupLattice(Sym(n)) ];
(GAP) List([2..5], n->Sum( List( ConjugacyClassesSubgroups( SymmetricGroup(n)), Size))); [Alexander Hulpke]
CROSSREFS
KEYWORD
nonn,hard,more,nice
EXTENSIONS
a(9) and a(10) from Alexander Hulpke, Dec 03 2004
More terms from a(11) and a(12) added by Christian G. Bower, Feb 23 2006 based on Goetz Pfeiffer's web page.
a(13) added by Liam Naughton, Jun 09 2011
a(14)-a(18) from Holt reference, Wouter Meeussen, Jul 02 2013
STATUS
approved
Number of atomic species of degree n; also number of connected permutation groups of degree n.
(Formerly M1563)
+10
6
0, 1, 1, 2, 6, 6, 27, 20, 130, 124, 598, 641, 4850, 4772, 35625, 46074, 389839, 487408, 4617554
OFFSET
0,4
COMMENTS
An atomic species is one that is not the product of smaller species. - Christian G. Bower, Feb 23 2006
A permutation group is connected if it is not the direct product of smaller permutation groups. - Christian G. Bower, Feb 23 2006
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 147.
Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Decoste, G. Labelle & J. Labelle, Espèces sur les petites cardinalités Tableaux divers, Université du Québec à Montréal (octobre 1988), Unpublished.
Jacques Labelle, Quelques espèces sur les ensembles de petite cardinalité, Ann. Sc. Math. Québec 9.1 (1985): 31-58. (Annotated scanned copy of preprint)
J. Labelle and Y. N. Yeh, The relation between Burnside rings and combinatorial species, J. Combin. Theory, A 50 (1989), 269-284.
L. Naughton and G. Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013 and J. Int. Seq. 16 (2013) #13.5.8.
N. J. A. Sloane, Transforms
FORMULA
Inverse Euler transform of A000638. Define b(n), c(n), d(): b(1)=d(1)=0. b(k)=A005227(k), k>1. c(k)=A000638(k), k>0. d(k)=a(k), k>1. d is Dirichlet convolution of b and c. - Christian G. Bower, Feb 23 2006
MATHEMATICA
A000638 = Cases[Import["https://oeis.org/A000638/b000638.txt", "Table"], {_, _}][[All, 2]];
(* EulerInvTransform is defined in A022562 *)
{0} ~Join~ EulerInvTransform[A000638 // Rest] (* Jean-François Alcover, Dec 03 2019, updated Mar 17 2020 *)
CROSSREFS
Cf. A005227. Unlabeled version of A116655.
KEYWORD
nonn,more,hard
AUTHOR
EXTENSIONS
a(11) corrected and a(12) added by Christian G. Bower, Feb 23 2006 based on Goetz Pfeiffer's edit to A000638.
Could be extended to a(18) now using the new terms for A000637. - N. J. A. Sloane, Jul 30 2010
a(13) from Liam Naughton, Nov 23 2012
a(14)-a(18) from the inverse Euler transform of A000637. - R. J. Mathar, Mar 03 2015
STATUS
approved

Search completed in 0.007 seconds