[go: up one dir, main page]

login
A005432
Number of permutation groups of degree n (or, number of distinct subgroups of symmetric group S_n, counting conjugates as distinct).
(Formerly M1690)
16
1, 1, 2, 6, 30, 156, 1455, 11300, 151221, 1694723, 29594446, 404126228, 10594925360, 175238308453, 5651774693595, 117053117995400, 5320744503742316, 125889331236297288, 7598016157515302757
OFFSET
0,3
COMMENTS
Labeled version of A000638.
L. Pyber shows c^(n^2(1+o(1))) <= a(n) <= d^(n^2(1+o(1))), c=2^(1/16), d=24^(1/6); conjectures lower bound is accurate.
REFERENCES
C. C. Sims, Computational methods in the study of permutation groups, pp. 169-183 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Piotr Graczyk, Hideyuki Ishi, Kołodziejek Bartosz, Hélène Massam, Model selection in the space of Gaussian models invariant by symmetry, arXiv:2004.03503 [math.ST], 2020.
D. Holt, Enumerating subgroups of the symmetric group, in Computational Group Theory and the Theory of Groups, II, edited by L.-C. Kappe, A. Magidin and R. Morse. AMS Contemporary Mathematics book series, vol. 511, pp. 33-37. [Annotated copy]
J. Labelle and Y. N. Yeh, The relation between Burnside rings and combinatorial species, J. Combin. Theory, A 50 (1989), 269-284.
L. Naughton and G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8.
L. Pyber, Enumerating Finite Groups of Given Order, Ann. Math. 137 (1993), 203-220.
N. J. A. Sloane, Transforms
Dashiell Stander, Qinan Yu, Honglu Fan, and Stella Biderman, Grokking Group Multiplication with Cosets, arXiv:2312.06581 [cs.LG], 2023. See footnote, p. 25.
FORMULA
Exponential transform of A116655. Binomial transform of A116693. - Christian G. Bower, Feb 23 2006
PROG
(Magma) n := 5; &+[ Length(s):s in SubgroupLattice(Sym(n)) ];
(GAP) List([2..5], n->Sum( List( ConjugacyClassesSubgroups( SymmetricGroup(n)), Size))); [Alexander Hulpke]
CROSSREFS
KEYWORD
nonn,hard,more,nice
EXTENSIONS
a(9) and a(10) from Alexander Hulpke, Dec 03 2004
More terms from a(11) and a(12) added by Christian G. Bower, Feb 23 2006 based on Goetz Pfeiffer's web page.
a(13) added by Liam Naughton, Jun 09 2011
a(14)-a(18) from Holt reference, Wouter Meeussen, Jul 02 2013
STATUS
approved