[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a102315 -id:a102315
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of 1 / (chi(-x) * chi(-x^3)) in powers of x where chi() is a Ramanujan theta function.
+10
4
1, 1, 1, 3, 3, 4, 7, 8, 10, 16, 19, 23, 33, 39, 48, 65, 77, 93, 122, 144, 173, 220, 259, 309, 384, 451, 534, 653, 764, 899, 1085, 1264, 1479, 1765, 2048, 2385, 2820, 3260, 3778, 4432, 5105, 5891, 6864, 7879, 9056, 10491, 12002, 13744, 15839, 18064, 20616, 23648
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution inverse is A112175, 2nd power is A102315, 3rd power is A229180, 6th power is A123653.
f(-1 / (216 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A112175.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/6) * eta(q^2) * eta(q^6) / (eta(q) * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [1, 0, 2, 0, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^k)^(-1) * (1 + x^(3*k))^(-1).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
EXAMPLE
G.f. = 1 + x + x^2 + 3*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 8*x^7 + ...
G.f. = q + q^7 + q^13 + 3*q^19 + 3*q^25 + 4*q^31 + 7*q^37 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^3, x^3], {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if ( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^6 + A) / (eta(x + A) * eta(x^3 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 28 2019
STATUS
approved

Search completed in 0.005 seconds