[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a328798 -id:a328798
     Sort: relevance | references | number | modified | created      Format: long | short | data
Where n appears in A329544, or -1 if n never appears.
+10
4
1, 3, 2, 5, 4, 9, 13, 12, 45, 40, 7, 56, 18, 11, 14, 15, 10, 19, 6, 44, 43, 8, 55, 17, 28, 21, 16, 25, 20, 29, 63, 42, 23, 175, 34, 27, 22, 31, 26, 35, 30, 80, 75, 24, 39, 33, 48, 37, 32, 49, 36, 85, 79, 76, 46, 187, 130, 47, 38, 51, 50, 89, 84, 110, 109
OFFSET
1,2
COMMENTS
a(919) is unknown. If it is not -1, it is greater than 10^6 (see A329544).
LINKS
FORMULA
a(A104444(n)) = -1. - Rémy Sigrist, Dec 11 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 10 2019
STATUS
approved
Expansion of (chi(x) * chi(-x^3))^2 in powers of x where chi() is a Ramanujan theta function.
+10
3
1, 2, 1, 0, 0, 2, 2, 0, 2, 2, 1, 0, 2, 6, 2, 0, 3, 6, 4, 0, 4, 8, 4, 0, 7, 14, 7, 0, 6, 16, 10, 0, 11, 20, 11, 0, 14, 32, 16, 0, 17, 38, 21, 0, 22, 46, 24, 0, 32, 66, 34, 0, 34, 78, 44, 0, 49, 96, 50, 0, 60, 130, 66, 0, 72, 154, 84, 0, 90, 186, 98, 0, 117, 244
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328802.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328789.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 12 sequence [2, -2, 0, 0, 2, -2, 2, 0, 0, -2, 2, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2 * (1 - x^(6*k-3))^2.
a(n) = (-1)^n * A328797(n). a(2*n) = A112206(n).
a(4*n) = A328789(n). a(4*n + 1) = 2 * A328798(n). a(4*n + 2) = A328790(n). a(4*n + 3) = 0.
EXAMPLE
G.f. = 1 + 2*x + x^2 + 2*x^5 + 2*x^6 + 2*x^8 + 2*x^9 + x^10 + ...
G.f. = q^-1 + 2*q^2 + q^5 + 2*q^14 + 2*q^17 + 2*q^23 + 2*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6])^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A))^2 / (eta(x+ A) * eta(x^4 + A) * eta(x^6 + A))^2, n))};
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 28 2019
STATUS
approved
Expansion of (chi(-x) * chi(x^3))^2 in powers of x where chi() is a Ramanujan theta function.
+10
3
1, -2, 1, 0, 0, -2, 2, 0, 2, -2, 1, 0, 2, -6, 2, 0, 3, -6, 4, 0, 4, -8, 4, 0, 7, -14, 7, 0, 6, -16, 10, 0, 11, -20, 11, 0, 14, -32, 16, 0, 17, -38, 21, 0, 22, -46, 24, 0, 32, -66, 34, 0, 34, -78, 44, 0, 49, -96, 50, 0, 60, -130, 66, 0, 72, -154, 84, 0, 90, -186
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A328800.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328790.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * (eta(q) * eta(q^6)^2)^2 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
Euler transform of period 12 sequence [-2, 0, 0, 0, -2, -2, -2, 0, 0, 0, -2, 0, ...].
G.f.: Product_{k>=1} (1 - x^(2*k-1))^2 * (1 + x^(6*k-3))^2.
a(n) = (-1)^n * A328795(n). a(2*n) = A112206(n).
a(4*n) = A328789(n). a(4*n + 1) = -2 * A328798(n). a(4*n + 2) = A328790(n). a(4*n + 3) = 0.
EXAMPLE
G.f. = 1 - 2*x + x^2 - 2*x^5 + 2*x^6 + 2*x^8 - 2*x^9 + x^10 + ...
G.f. = q^-1 - 2*q^2 + q^5 - 2*q^14 + 2*q^17 + 2*q^23 - 2*q^26 + ..
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2] QPochhammer[ -x^3, x^6])^2, {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^2)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))};
KEYWORD
sign
AUTHOR
Michael Somos, Oct 27 2019
STATUS
approved

Search completed in 0.005 seconds