OFFSET
1,1
COMMENTS
If 2^p-1 is a Mersenne prime greater than 3 then m = 65*2^(p-2)*(2^p-1) is in the sequence (the proof is easy).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
sigma(12) = 28 = 7*phi(12) so 12 is in the sequence.
MAPLE
with(numtheory): A136540:=n->`if`(sigma(n)=7*phi(n), n, NULL): seq(A136540(n), n=1..10^5); # Wesley Ivan Hurt, Feb 11 2017
MATHEMATICA
Do[If[DivisorSigma[1, n]==7*EulerPhi[n], Print[n]], {n, 600000}]
(* Second program *)
Select[Range[10^6], DivisorSigma[1, #] == 7 EulerPhi@ # &] (* Michael De Vlieger, Feb 12 2017 *)
PROG
(PARI) is(n)=sigma(n)==7*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
KEYWORD
easy,nonn
AUTHOR
Farideh Firoozbakht, Jan 05 2008
STATUS
approved