[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a104903 -id:a104903
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that sigma(n) = 7*phi(n).
+10
7
12, 78, 140, 910, 2214, 4180, 4674, 8008, 16120, 25758, 27170, 46816, 54530, 58302, 94240, 99484, 116116, 200260, 233740, 257140, 264160, 350740, 371898, 383656, 479864, 518022, 523218, 551540, 561340, 575598, 616722, 646646, 785118, 965960, 1027000
OFFSET
1,1
COMMENTS
If 2^p-1 is a Mersenne prime greater than 3 then m = 65*2^(p-2)*(2^p-1) is in the sequence (the proof is easy).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
EXAMPLE
sigma(12) = 28 = 7*phi(12) so 12 is in the sequence.
MAPLE
with(numtheory): A136540:=n->`if`(sigma(n)=7*phi(n), n, NULL): seq(A136540(n), n=1..10^5); # Wesley Ivan Hurt, Feb 11 2017
MATHEMATICA
Do[If[DivisorSigma[1, n]==7*EulerPhi[n], Print[n]], {n, 600000}]
(* Second program *)
Select[Range[10^6], DivisorSigma[1, #] == 7 EulerPhi@ # &] (* Michael De Vlieger, Feb 12 2017 *)
PROG
(PARI) is(n)=sigma(n)==7*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
KEYWORD
easy,nonn
AUTHOR
Farideh Firoozbakht, Jan 05 2008
STATUS
approved
Numbers n such that sigma(n) = 10*phi(n) (where sigma=A000203, phi=A000010).
+10
5
168, 270, 570, 2376, 2436, 5016, 6426, 7110, 13566, 15834, 34452, 58520, 62568, 72732, 75210, 113832, 126882, 168756, 169218, 191862, 199368, 223938, 240312, 280488, 308568, 321468, 420888, 449442, 472758, 661848, 673608, 776736, 848540, 854496, 907236
OFFSET
1,1
COMMENTS
If n is in this sequence, then for any prime p not dividing n, sigma(np) - 10*phi(np) = 2*sigma(n).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 10 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 10^6, sigma(k) - 10*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 19 2010
STATUS
approved
Numbers n such that sigma(n) = 11*phi(n) (where sigma=A000203, phi=A000010).
+10
5
2580, 16770, 18630, 28896, 35970, 61404, 66024, 147576, 163944, 215124, 224010, 296184, 399126, 408672, 443394, 464340, 476010, 574308, 856086, 862752, 868428, 931224, 957348, 1004910, 1110186, 1496610, 1721720, 1723290, 1833348, 1971288, 2139852, 2234790
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 11 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 2e6, sigma(k) - 11*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that sigma(n) = 13*phi(n) (where sigma=A000203, phi=A000010).
+10
5
630, 5544, 11160, 18810, 27000, 57000, 80388, 161820, 178020, 182880, 242820, 265608, 388620, 391500, 447678, 465192, 522522, 671760, 690120, 711000, 775170, 826500, 901170, 1051830, 1102290, 1157130, 1418160, 1578330, 1679400, 1812384, 1874520, 1993824
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[2*10^6], DivisorSigma[1, #]==13EulerPhi[#]&] (* Harvey P. Dale, Mar 29 2018 *)
PROG
(PARI) for(k=1, 2e6, sigma(k) - 13*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that sigma(n) = 14*phi(n) (where sigma=A000203, phi=A000010).
+10
5
420, 2730, 5940, 12540, 24024, 38610, 48360, 66528, 77490, 81510, 133920, 140448, 141372, 156420, 163590, 282720, 284580, 298452, 348348, 498420, 600780, 681912, 701220, 771420, 792480, 901530, 918918, 1016730, 1052220, 1150968, 1372680, 1439592, 1654620
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 14 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 2e6, sigma(k) - 14*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved
Numbers n such that sigma(n) = 15*phi(n) (where sigma=A000203, phi=A000010).
+10
5
840, 11880, 12180, 25080, 32130, 67830, 79170, 172260, 282744, 312840, 363660, 569160, 596904, 634410, 696696, 843780, 846090, 959310, 996840, 1119690, 1201560, 1402440, 1542840, 1607340, 1929312, 2104440, 2247210, 2363790, 3309240, 3368040, 3883680
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 15 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 3e6, sigma(k) - 15*eulerphi(k) || print1(k", "));
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.006 seconds