OFFSET
1,1
COMMENTS
If n is in this sequence, then for any prime p not dividing n, sigma(np) - 10*phi(np) = 2*sigma(n).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[10^6], DivisorSigma[1, #] == 10 * EulerPhi[#] &] (* Amiram Eldar, Dec 04 2019 *)
PROG
(PARI) for(k=1, 10^6, sigma(k) - 10*eulerphi(k) || print1(k", "));
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 19 2010
STATUS
approved