[go: up one dir, main page]

login
Search: a090129 -id:a090129
     Sort: relevance | references | number | modified | created      Format: long | short | data
Powers of 2: a(n) = 2^n.
(Formerly M1129 N0432)
+10
3184
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
OFFSET
0,2
COMMENTS
2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of different ways to run up a staircase with n steps, taking steps of sizes 1, 2, 3, ... and r (r <= n), where the order IS important and there is no restriction on the number or the size of each step taken. - Mohammad K. Azarian, May 21 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
Arno Berger and Theodore P. Hill, What is Benford's Law?, Notices, Amer. Math. Soc., 64:2 (2017), 132-134.
Tobias Boege and Thomas Kahle, Construction Methods for Gaussoids, arXiv:1902.11260 [math.CO], 2019.
Anicius Manlius Severinus Boethius, De arithmetica, Book 1, section 9.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Peter J. Cameron, Notes on Counting, Peter Cameron's Blog, 15/05/2017.
CDLI, M 08613.
Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
V. Coll, M. Hyatt, C. Magnant, and H. Wang, Meander graphs and Frobenius seaweed Lie algebras II, Journal of Generalized Lie Theory and Applications 9 (1) (2015) 227.
M. Coons and H. Winning, Powers of Two Modulo Powers of Three, J. Int. Seq. 18 (2015) # 15.6.1.
Keneth Adrian P. Dagal and Jose Arnaldo B. Dris, A Criterion for Almost Perfect Numbers in Terms of the Abundancy Index, arXiv:1308.6767v1 [math.NT], Aug 14 2013.
V. Dergachev and A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2) (2000) 331-343.
Persi Diaconis, The distribution of leading digits and uniform distribution mod 1, Ann. Probability, 5, 1977, 72--81.
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 18
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seqs., Vol. 6, 2003.
Hermann Gruber, Jonathan Lee and Jeffrey Shallit, Enumerating regular expressions and their languages, arXiv:1204.4982v1 [cs.FL], 2012.
Marcus Jaiclin, et al. Pascal's Triangle, Mod 2,3,5
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
Augustine O. Munagi, Integer Compositions and Higher-Order Conjugation, J. Int. Seq., Vol. 21 (2018), Article 18.8.5.
R. Ondrejka, Exact values of 2^n, n=1(1)4000, Math. Comp., 23 (1969), 456.
G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.
S. Saito, T. Tanaka and N. Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values , J. Int. Seq. 14 (2011) # 11.2.4, Table 1.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
J. Tanton, A Dozen Questions about the Powers of Two, Math Horizons, Vol. 8, pp. 5-10, September 2001.
G. Villemin's Almanac of Numbers, Puissances de 2
Eric Weisstein's World of Mathematics, Abundance
Eric Weisstein's World of Mathematics, Binomial Sums
Eric Weisstein's World of Mathematics, Binomial Transform
Eric Weisstein's World of Mathematics, Hailstone Number (Collatz Problem)
Eric Weisstein's World of Mathematics, Composition
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
Eric Weisstein's World of Mathematics, Empty Graph
Eric Weisstein's World of Mathematics, Erf
Eric Weisstein's World of Mathematics, Fractional Part
Eric Weisstein's World of Mathematics, Halved Cube Graph
Eric Weisstein's World of Mathematics, Hypercube
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Least Deficient Number
Eric Weisstein's World of Mathematics, Maximum Clique
Eric Weisstein's World of Mathematics, PowerFractional Parts
Eric Weisstein's World of Mathematics, Subset
Eric Weisstein's World of Mathematics, Vertex Cover
FORMULA
a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023
EXAMPLE
There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
MAPLE
A000079 := n->2^n; [ seq(2^n, n=0..50) ];
isA000079 := proc(n)
local fs;
fs := numtheory[factorset](n) ;
if n = 1 then
true ;
elif nops(fs) <> 1 then
false;
elif op(1, fs) = 2 then
true;
else
false ;
end if;
end proc: # R. J. Mathar, Jan 09 2017
MATHEMATICA
Table[2^n, {n, 0, 50}]
2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
PROG
(PARI) A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
(PARI) unimodal(n)=local(x, d, um, umc); umc=0; for (c=0, n!-1, x=numtoperm(n, c); d=0; um=1; for (j=2, n, if (x[j]<x[j-1], d=1); if (x[j]>x[j-1] && d==1, um=0); if (um==0, break)); if (um==1, print(x)); umc+=um); umc
(PARI) x=1; for (n=0, 1000, write("b000079.txt", n, " ", x); x+=x); \\ Harry J. Smith, Apr 26 2009
(Haskell)
a000079 = (2 ^)
a000079_list = iterate (* 2) 1
-- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
(Maxima) A000079(n):=2^n$ makelist(A000079(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */
(Magma) [2^n: n in [0..40]] // Vincenzo Librandi, Feb 17 2014
(Magma) [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
(Scheme) (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
(Scala) (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)(_ * _) // Alonso del Arte, Jan 16 2020
(Python)
def a(n): return 1<<n
print([a(n) for n in range(34)]) # Michael S. Branicky, Jul 28 2022
CROSSREFS
This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
KEYWORD
nonn,core,easy,nice
EXTENSIONS
Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014
STATUS
approved
Triangle read by rows: T(n,k) (n>=1, 1<=k<=n) = number of binary sequences of length n and curling number k.
+10
21
2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 12, 12, 4, 2, 2, 20, 26, 10, 4, 2, 2, 40, 52, 20, 8, 4, 2, 2, 74, 110, 38, 18, 8, 4, 2, 2, 148, 214, 82, 36, 16, 8, 4, 2, 2, 286, 438, 164, 70, 34, 16, 8, 4, 2, 2, 572, 876, 328, 140, 68, 32, 16, 8, 4, 2, 2, 1124, 1762, 660, 286, 134, 66, 32, 16, 8, 4, 2, 2, 2248, 3524, 1320, 572, 268, 132, 64, 32, 16, 8, 4, 2, 2
OFFSET
1,1
COMMENTS
For definition of curling number see A216730.
"Binary" sequence means two-valued. It doesn't matter if the alphabet is {0,1} or {2,3}.
It appears that reversed rows converge to the sequence formed by the even terms of A090129. - Omar E. Pol, Nov 20 2012
LINKS
Benjamin Chaffin, John P. Linderman, N. J. A. Sloane and Allan Wilks, First 104 rows of A216955
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
EXAMPLE
Triangle begins:
2,
2, 2,
4, 2, 2,
6, 6, 2, 2,
12, 12, 4, 2, 2,
20, 26, 10, 4, 2, 2,
40, 52, 20, 8, 4, 2, 2,
74, 110, 38, 18, 8, 4, 2, 2,
148, 214, 82, 36, 16, 8, 4, 2, 2,
286, 438, 164, 70, 34, 16, 8, 4, 2, 2,
...
CROSSREFS
Leading columns are A122536 (or A093371), A217211, A217212. Cf. A216956, A217943.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Sep 26 2012
EXTENSIONS
Extended to 104 rows by N. J. A. Sloane, Nov 15 2012
STATUS
approved
One, two, and all numbers of the form 2^k * prime(j) where k > 0 and j already belongs to the sequence.
+10
12
1, 2, 4, 6, 8, 12, 14, 16, 24, 26, 28, 32, 38, 48, 52, 56, 64, 74, 76, 86, 96, 104, 106, 112, 128, 148, 152, 172, 178, 192, 202, 208, 212, 214, 224, 256, 262, 296, 304, 326, 344, 356, 384, 404, 416, 424, 428, 446, 448, 478, 512, 524, 526, 592, 608, 622, 652
OFFSET
1,2
COMMENTS
Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted semi-identity trees. A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct. Note that these conditions together imply that there is at most one non-leaf branch under any given vertex.
Also Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches (of the root), which gives a bijective correspondence between positive integers and unlabeled rooted trees.
LINKS
FORMULA
Intersection of A306202 (semi-identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding). - Gus Wiseman, Jun 09 2020
EXAMPLE
The sequence of all semi-lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex, together with their Matula-Goebel numbers, begins:
1: o
2: (o)
4: (oo)
6: (o(o))
8: (ooo)
12: (oo(o))
14: (o(oo))
16: (oooo)
24: (ooo(o))
26: (o(o(o)))
28: (oo(oo))
32: (ooooo)
38: (o(ooo))
48: (oooo(o))
52: (oo(o(o)))
56: (ooo(oo))
64: (oooooo)
74: (o(oo(o)))
76: (oo(ooo))
86: (o(o(oo)))
MAPLE
N:= 1000: # for terms <= N
S:= {1, 2}:
with(queue):
Q:= new(1, 2):
while not empty(Q) do
r:= dequeue(Q);
p:= ithprime(r);
newS:= {seq(2^i*p, i=1..ilog2(N/p))} minus S;
S:= S union newS;
for s in newS do enqueue(Q, s) od:
od:
sort(convert(S, list)); # Robert Israel, Feb 05 2020
MATHEMATICA
uryQ[n_]:=n==1||MatchQ[FactorInteger[n], ({{2, _}, {p_, 1}}/; uryQ[PrimePi[p]])|{{2, _}}];
Select[Range[100], uryQ]
CROSSREFS
The enumeration of these trees by nodes is A324969 (essentially A000045).
The enumeration of these trees by leaves appears to be A090129(n + 1).
The (non-semi) lone-child-avoiding version is A331683.
Matula-Goebel numbers of rooted semi-identity trees are A306202.
Lone-child-avoiding locally disjoint rooted trees by leaves are A316697.
The set S of numbers with at most one prime index in S is A331784.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 26 2020
STATUS
approved
a(n) = 2*A131577(n).
+10
10
0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
OFFSET
0,2
COMMENTS
Essentially the same as A131577, A046055, A011782, A000079 and A034008.
FORMULA
a(n) = A000079(n), n>0.
a(n) = (-1)^(n+1)*A084633(n+1).
a(n) + A155543(n) = 2^n+4^n = A063376(n) = 2*A007582(n) =2*A137173(2n+1).
Conjecture: a(n) = A090129(n+3)-A090129(n+2).
G.f.: 2*x/(1-2*x). - R. J. Mathar, Jul 23 2009
MATHEMATICA
CoefficientList[ Series[ 2x/(1 - 2x), {x, 0, 32}], x] (* Robert G. Wilson v, Aug 08 2018 *)
PROG
(PARI) a(n)=if(n, 2^n, 0) \\ Charles R Greathouse IV, Aug 01 2016
(Python)
def A155559(n): return 1<<n if n else 0 # Chai Wah Wu, Sep 05 2024
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 24 2009
EXTENSIONS
Edited by R. J. Mathar, Jul 23 2009
Extended by Omar E. Pol, Nov 19 2012
STATUS
approved
a(n) = (3^(2^n) - 1)/2^(n + 2).
+10
6
1, 5, 205, 672605, 14476720225405, 13412827423017626893194723005, 23027704253395670256876704807446325518902757016163752166205, 135750441774555403090761510536778616322479346492704236319926586357457102177506285098634540189560165548644204629442284605
OFFSET
1,2
COMMENTS
Every element of this sequence is an odd number (see link). - Graeme McRae, Jan 12 2005
CROSSREFS
Cf. A090129.
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 22 2002
STATUS
approved
Every fourth term of the sequence of natural numbers 1,2,3,4,... is halved.
+10
6
1, 2, 3, 2, 5, 6, 7, 4, 9, 10, 11, 6, 13, 14, 15, 8, 17, 18, 19, 10, 21, 22, 23, 12, 25, 26, 27, 14, 29, 30, 31, 16, 33, 34, 35, 18, 37, 38, 39, 20, 41, 42, 43, 22, 45, 46, 47, 24, 49, 50, 51, 26, 53, 54, 55, 28, 57, 58, 59, 30, 61, 62, 63, 32, 65, 66, 67, 34, 69, 70, 71, 36, 73, 74, 75, 38, 77, 78, 79, 40, 81, 82, 83, 42, 85, 86, 87, 44, 89, 90, 91, 46, 93, 94, 95, 48, 97, 98, 99
OFFSET
1,2
COMMENTS
a(n) is the length of the period of the sequence k^2 mod n, k=1,2,3,4,..., i.e., the length of the period of A000035 (n=2), A011655 (n=3), A000035 (n=4), A070430 (n=5), A070431 (n=6), A053879 (n=7), A070432 (n=8), A070433 (n=9), A008959 (n=10), A070434 (n=11), A070435 (n=12) etc.
From Franklin T. Adams-Watters, Feb 24 2011: (Start)
Clearly if gcd(n,m) = 1, a(nm) = lcm(a(n),a(m)), so it suffices to establish this for prime powers.
If p is a prime, the period must divide p, but k^2 mod p is not constant, so a(p) = p.
a(p^e), e > 1, must be divisible by a(p^(e-1)), and must divide p^e. If p != 2, (p^(e-1)+1)^2 = p^(2e-2)+2p^(e-1)+1 == 2p^(e-1)+1 (mod p^2), so a(p^e) != p^(e-1); it must then be e.
By inspection, a(4) = 2 and a(8) = 4.
This leaves a(2^e), e > 3. But then (2^(e-2)+1)^2 = 2^(2e-4)+2^(e-1)+1 == 2^(e-1)+1 (mod 2^e), so a(n) > 2^(e-2). On the other hand, (2^(e-1)+c)^2 = 2^(2e-2)+c2^e+c^2 == c^2 (mod 2^e). Hence the period is 2^(e-1). (End)
FORMULA
a(n) = 2*a(n-4) - a(n-8).
a(4n) = 2n; a(4n+1) = 4n+1; a(4n+2) = 4n+2; a(4n+3) = 4n+3.
a(n) = n/A164115(n).
G.f.: x*(1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 + x^6) / ( (x-1)^2*(1+x)^2*(x^2+1)^2 ).
Dirichlet g.f.: (1-2/4^s)*zeta(s-1).
A019554(n) | a(n). - Charles R Greathouse IV, Feb 24 2011
a(n) = n*(7 - (-1)^n - (-i)^n - i^n)/8, with i=sqrt(-1). - Bruno Berselli, Feb 25 2011
Multiplicative with a(p^e)=2^e if p=2 and e<=1; a(p^e)=2^(e-1) if p=2 and e>=2; a(p^e)=p^e otherwise. - David W. Wilson, Feb 26 2011
a(n) * A060819(n+2) = A142705(n+1) = A061037(2n+2). - Paul Curtz, Mar 02 2011
a(n) = n - (n/2)*floor(((n-1) mod 4)/3). - Gary Detlefs, Apr 14 2013
a(2^n) = A090129(n+1). - R. J. Mathar, Oct 09 2014
a(n) = n*(7 - (-1)^n - 2*cos(n*Pi/2))/8. - Federico Provvedi, Jan 02 2018
E.g.f.: (1/4)*x*(4*cosh(x) + sin(x) + 3*sinh(x)). - Stefano Spezia, Jan 26 2020
Sum_{k=1..n} a(k) ~ (7/16) * n^2. - Amiram Eldar, Nov 28 2022
MAPLE
A186646 := proc(n) if n mod 4 = 0 then n/2 ; else n ; end if; end proc ;
MATHEMATICA
Flatten[Table[{n, n+1, n+2, (n+3)/2}, {n, 1, 101, 4}]] (* or *) LinearRecurrence[ {0, 0, 0, 2, 0, 0, 0, -1}, {1, 2, 3, 2, 5, 6, 7, 4}, 100] (* Harvey P. Dale, May 30 2014 *)
Table[n (7 - (-1)^n - 2 Cos[n Pi/2])/8, {n, 100}] (* Federico Provvedi , Jan 02 2018 *)
PROG
(PARI) a(n)=if(n%4, n, n/2) \\ Charles R Greathouse IV, Oct 16 2015
(Python)
def A186646(n): return n if n&3 else n>>1 # Chai Wah Wu, Jan 10 2023
CROSSREFS
Cf. A000224 (size of the set of moduli of k^2 mod n), A019554, A060819, A061037, A090129, A142705, A164115, A283971.
KEYWORD
nonn,easy,mult
AUTHOR
R. J. Mathar, Feb 25 2011
STATUS
approved
Number of binary strings of length n which have more 00 than 01 substrings.
+10
5
0, 0, 1, 2, 4, 10, 21, 42, 89, 184, 371, 758, 1546, 3122, 6315, 12782, 25780, 51962, 104759, 210934, 424404, 853806, 1716759, 3450158, 6932169, 13924260, 27959805, 56130762, 112662414, 226080318, 453595341, 909925794, 1825052601, 3660020992, 7339006091
OFFSET
0,4
FORMULA
a(n) = 2^n - A163493(n) - A371564(n).
a(n) = ((4*n^2-15*n+7)*a(n-1) -(5*n^2-22*n+14)*a(n-2) +2*(3*n^2-14*n+10)*a(n-3) -4*(3*n^2-16*n+18)*a(n-4) +8*(n-2)*(n-4)*a(n-5)) / (n*(n-3)) for n>=5. - Alois P. Heinz, Mar 20 2024
For n >= 2, a(n) = 2*a(n-1) + A163493(n-1) - A163493(n-2) - A370048(n-2). - Max Alekseyev, Apr 30 2024
a(n) = 2^(n-1) - (1/2) * Sum_{k=0..floor(n/3)} binomial(2*k,k) * (2*binomial(n-2*k,n-3*k) - binomial(n-2*k-1,n-3*k)). - Max Alekseyev, May 01 2024
G.f. 1/(1-2*x)/2 - (1+x)/(2*sqrt(1-2*x+x^2-4*x^3+4*x^4)). - Max Alekseyev, Apr 30 2024
EXAMPLE
a(4) = 4: 0000, 0001, 1000, 1100.
a(5) = 10: 00000, 00001, 00010, 00011, 00100, 01000, 10000, 10001, 11000, 11100.
MAPLE
b:= proc(n, l, t) option remember; `if`(n+t<1, 0, `if`(n=0, 1,
add(b(n-1, i, t+`if`(l=0, (-1)^i, 0)), i=0..1)))
end:
a:= n-> b(n, 2, 0):
seq(a(n), n=0..34); # Alois P. Heinz, Mar 20 2024
MATHEMATICA
tup[n_] := Tuples[{0, 1}, n];
cou[lst_List] := Count[lst, {0, 0}] > Count[lst, {0, 1}];
par[lst_List] := Partition[lst, 2, 1];
a[n_] := Map[cou, Map[par, tup[n]]] // Boole // Total;
Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}]
PROG
(PARI) { a371358(n) = 2^(n-1) - sum(k=0, n\3, binomial(2*k, k) * (2*binomial(n-2*k, n-3*k) - binomial(n-2*k-1, n-3*k))) / 2; } \\ Max Alekseyev, May 01 2024
CROSSREFS
Cf. A163493 (equal 00 and 01), A371564 (more 01 than 00), A090129 (equal 01 and 10), A182027 (equal 00 and 11), A370048 (one more 00 than 01).
Cf. A000079(n-2) (more 01 than 10, for n>=2).
KEYWORD
nonn
AUTHOR
Robert P. P. McKone, Mar 19 2024
STATUS
approved
Number of binary strings of length n which have more 01 than 00 substrings.
+10
4
0, 0, 1, 3, 6, 13, 28, 56, 113, 231, 464, 930, 1875, 3766, 7547, 15151, 30398, 60917, 122116, 244786, 490435, 982544, 1968413, 3942649, 7896116, 15813268, 31665423, 63403245, 126945244, 254152625, 508798604, 1018538560, 2038870881, 4081149015, 8168806568
OFFSET
0,4
FORMULA
a(n) = 2^n - A163493(n) - A371358(n).
a(n) = (1 - 8*(n-4)*a(n-5) + 4*(3*n-10)*a(n-4) + 2*(8-3*n)*a(n-3) + (5*n-12)*a(n-2) + (7-4*n)*a(n-1))/(1-n) for n>=5.
For n >= 2, a(n) = 2*a(n-1) - A163493(n) + A163493(n-1) + A163493(n-2) + A370048(n-2). - Max Alekseyev, May 01 2024
G.f.: ((1-3*x+2*x^2)^(-1) - (1-2*x+x^2-4*x^3+4*x^4)^(-1/2)) * x / 2. - Max Alekseyev, Apr 30 2024
EXAMPLE
a(4) = 6: 0101, 0110, 0111, 1010, 1011, 1101.
a(5) = 13: 0010, 0100, 0101, 0101, 0110, 0111, 0111, 1010, 1011, 1011, 1101, 1101, 1110.
MAPLE
b:= proc(n, l, t) option remember; `if`(n+t<1, 0, `if`(n=0, 1,
add(b(n-1, i, t-`if`(l=0, (-1)^i, 0)), i=0..1)))
end:
a:= n-> b(n, 2, 0):
seq(a(n), n=0..34); # Alois P. Heinz, Mar 27 2024
MATHEMATICA
tup[n_] := Tuples[{0, 1}, n];
cou[lst_List] := Count[lst, {0, 1}] > Count[lst, {0, 0}];
par[lst_List] := Partition[lst, 2, 1];
a[n_] := Map[cou, Map[par, tup[n]]] // Boole // Total;
Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}]
CROSSREFS
Cf. A163493 (equal 00 and 01), A371358 (more 00 than 01), A090129 (equal 01 and 10), A182027 (equal 00 and 11), A370048 (one more 00 than 01).
Cf. A000079(n-2) (more 01 than 10, for n>=2).
KEYWORD
nonn
AUTHOR
Robert P. P. McKone, Mar 27 2024
STATUS
approved
a(n)=2*A081294(n).
+10
3
2, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664
OFFSET
0,1
FORMULA
a(n)=A000302(n), n>0.
G.f.: 2*(1-2*x)/(1-4*x). [R. J. Mathar, Jul 23 2009]
Conjecture: a(n)=A090129(2n+2).
MATHEMATICA
CoefficientList[Series[2(1-2x)/(1-4x), {x, 0, 30}], x] (* or *) Join[{2}, NestList[ 4#&, 4, 30]] (* Harvey P. Dale, Nov 13 2015 *)
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 24 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Jul 23 2009
STATUS
approved
Triangular array T(n,k) read by rows: T(n,k) is the number of degree n monic polynomials in GF(2)[x] with exactly k squarefree factors in its unique factorization into irreducible polynomials.
+10
3
2, 1, 1, 2, 2, 3, 4, 1, 6, 8, 2, 9, 16, 7, 18, 30, 14, 2, 30, 60, 34, 4, 56, 114, 72, 14, 99, 220, 156, 36, 1, 186, 422, 320, 90, 6, 335, 817, 671, 207, 18, 630, 1564, 1364, 484, 54, 1161, 3023, 2787, 1070, 148, 3, 2182, 5818, 5624, 2362, 386, 12, 4080, 11240, 11357, 5095, 947, 49
OFFSET
1,1
COMMENTS
T(n,k) is also the number of binary words of length n whose Lyndon factorization is strict, i.e., it contains exactly k factors of distinct Lyndon words.
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + y*x)^A001037(k).
EXAMPLE
Triangular array T(n,k) begins:
2;
1, 1;
2, 2;
3, 4, 1;
6, 8, 2;
9, 16, 7;
18, 30, 14, 2;
30, 60, 34, 4;
56, 114, 72, 14;
99, 220, 156, 36, 1;
...
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=0, 1,
add(mobius(n/d)*2^d, d=divisors(n))/n)
end:
b:= proc(n, i) option remember; expand(`if`(n=0, x^n, `if`(i<1, 0,
add(binomial(g(i), j)*b(n-i*j, i-1)*x^j, j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..20); # Alois P. Heinz, May 28 2019
MATHEMATICA
nn = 16; a = Table[1/n Sum[2^d MoebiusMu[n/d], {d, Divisors[n]}], {n, 1, nn}]; Map[Select[#, # > 0 &] &, Drop[CoefficientList[
Series[Product[ (1 + u z^k)^a[[k]], {k, 1, nn}], {z, 0, nn}], {z, u}], 1]] // Grid
CROSSREFS
Column k=1 gives A001037.
Row sums give A090129(n+1).
Cf. A269456.
KEYWORD
nonn,look,tabf
AUTHOR
Geoffrey Critzer, Mar 25 2019
STATUS
approved

Search completed in 0.018 seconds