[go: up one dir, main page]

login
A026569
a(n) = T(n,n), T given by A026568. Also a(n) = number of integer strings s(0),...,s(n) counted by T, such that s(n)=0.
8
1, 1, 3, 5, 13, 27, 67, 153, 375, 893, 2189, 5319, 13089, 32155, 79479, 196573, 487833, 1212135, 3018355, 7525585, 18792303, 46980373, 117589689, 294613155, 738844719, 1854484305, 4658460165, 11710592711, 29458662005, 74151824271
OFFSET
0,3
COMMENTS
Number of grand Motzkin n-paths avoiding UF. - David Scambler, Jun 20 2013
LINKS
Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k, k)*binomial(n-k, k). - Paul Barry, Sep 09 2004
G.f.: sqrt(1/((1-x)*(1-x-4*x^2))). - Ralf Stephan, Jan 08 2004
D-finite with recurrence: a(n) = 1/n*((2*n-1)*a(n-1) + (3*n-3)*a(n-2) - (4*n-6)*a(n-3)). - Vladeta Jovovic, Mar 12 2005
a(n) = Sum_{k=0..n} C(k, n-k)*C(2*(n-k), n-k). - Paul Barry, Jul 30 2005
G.f.: 1/(1-x-2*x^2/(1-0*x-x^2/(1-x-x^2/(1-0*x-2*x^2/(1-x-x^2/.... (continued fraction). Paul Barry, Dec 07 2008
a(n) ~ sqrt((5+13/sqrt(17))/8) * ((1+sqrt(17))/2)^n/sqrt(Pi*n). - Vaclav Kotesovec, Aug 10 2013
EXAMPLE
For a(3) = 5 the five grand Motzkin paths are FDU, DFU, FUD, UDF and FFF. The paths containing UF, namely UFD and DUF, are avoided. - David Scambler, Jun 20 2013
MATHEMATICA
CoefficientList[Series[Sqrt[1/((1-x)(1-x-4x^2))], {x, 0, 30}], x] (* Harvey P. Dale, Oct 06 2011 *)
PROG
(PARI) my(x='x+O('x^30)); Vec( 1/sqrt((1-x)*(1-x-4*x^2)) ) \\ G. C. Greubel, Aug 03 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt((1-x)*(1-x-4*x^2)) )); // G. C. Greubel, Aug 03 2019
(Sage) (1/sqrt((1-x)*(1-x-4*x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 03 2019
(GAP) List([0..30], n-> Sum([0..Int(n/2)], k-> Binomial(2*k, k)*Binomial( n-k, k) )); # G. C. Greubel, Aug 03 2019
CROSSREFS
Cf. A026568.
Sequence in context: A190570 A337860 A000631 * A035082 A005198 A160823
KEYWORD
nonn
STATUS
approved