[go: up one dir, main page]

login
Search: a098407 -id:a098407
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of Product_{k>=1} (1 + 2^(k-1)*x^k).
+10
37
1, 1, 2, 6, 12, 32, 72, 176, 384, 960, 2112, 4992, 11264, 26112, 58368, 136192, 301056, 688128, 1548288, 3489792, 7766016, 17596416, 38993920, 87293952, 194248704, 432537600, 957349888, 2132803584, 4699717632, 10406068224, 23001563136, 50683969536, 111434268672, 245819768832
OFFSET
0,3
COMMENTS
Number of compositions of partitions of n into distinct parts. a(3) = 6: 3, 21, 12, 111, 2|1, 11|1. - Alois P. Heinz, Sep 16 2019
Also the number of ways to split a composition of n into contiguous subsequences with strictly decreasing sums. - Gus Wiseman, Jul 13 2020
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -1, g(n) = (-1) * 2^(n-1). - Seiichi Manyama, Aug 22 2020
FORMULA
G.f.: Product_{k>=1} (1 + A011782(k)*x^k).
a(n) ~ 2^n * exp(2*sqrt(-polylog(2, -1/2)*n)) * (-polylog(2, -1/2))^(1/4) / (sqrt(6*Pi) * n^(3/4)). - Vaclav Kotesovec, Sep 19 2019
EXAMPLE
From Gus Wiseman, Jul 13 2020: (Start)
The a(0) = 1 through a(4) = 12 splittings:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (1,1,2)
(1,1),(1) (1,2,1)
(2,1,1)
(3),(1)
(1,1,1,1)
(1,2),(1)
(2,1),(1)
(1,1,1),(1)
(End)
MATHEMATICA
nmax = 33; CoefficientList[Series[Product[(1 + 2^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
PROG
(PARI) N=40; x='x+O('x^N); Vec(prod(k=1, N, 1+2^(k-1)*x^k)) \\ Seiichi Manyama, Aug 22 2020
CROSSREFS
The non-strict version is A075900.
Starting with a reversed partition gives A323583.
Starting with a partition gives A336134.
Partitions of partitions are A001970.
Splittings with equal sums are A074854.
Splittings of compositions are A133494.
Splittings with distinct sums are A336127.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 22 2018
STATUS
approved
First differences of the binomial transform of the partition numbers (A000041).
+10
30
1, 1, 3, 8, 21, 54, 137, 344, 856, 2113, 5179, 12614, 30548, 73595, 176455, 421215, 1001388, 2371678, 5597245, 13166069, 30873728, 72185937, 168313391, 391428622, 908058205, 2101629502, 4853215947, 11183551059, 25718677187, 59030344851, 135237134812, 309274516740
OFFSET
0,3
COMMENTS
a(n) = A103446(n) for n>=1; here a(0) is set to 1 in accordance with the definition and other important generating functions.
From Gus Wiseman, Dec 12 2022: (Start)
Also the number of sequences of compositions (A133494) with weakly decreasing lengths and total sum n. For example, the a(0) = 1 through a(3) = 8 sequences are:
() ((1)) ((2)) ((3))
((11)) ((12))
((1)(1)) ((21))
((111))
((1)(2))
((2)(1))
((11)(1))
((1)(1)(1))
The case of constant lengths is A101509.
The case of strictly decreasing lengths is A129519.
The case of sequences of partitions is A141199.
The case of twice-partitions is A358831.
(End)
LINKS
FORMULA
G.f.: Product_{n>=1} (1-x)^n / ((1-x)^n - x^n).
G.f.: Sum_{n>=0} x^n * (1-x)^(n*(n-1)/2) / Product_{k=1..n} ((1-x)^k - x^k).
G.f.: Sum_{n>=0} x^(n^2) * (1-x)^n / Product_{k=1..n} ((1-x)^k - x^k)^2.
G.f.: exp( Sum_{n>=1} x^n/((1-x)^n - x^n) / n ).
G.f.: exp( Sum_{n>=1} sigma(n) * x^n/(1-x)^n / n ), where sigma(n) is the sum of divisors of n (A000203).
G.f.: Product_{n>=1} (1 + x^n/(1-x)^n)^A001511(n), where 2^A001511(n) is the highest power of 2 that divides 2*n.
a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - Vaclav Kotesovec, Jun 25 2015
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 8*x^3 + 21*x^4 + 54*x^5 + 137*x^6 + 344*x^7 +...
The g.f. equals the product:
A(x) = (1-x)/((1-x)-x) * (1-x)^2/((1-x)^2-x^2) * (1-x)^3/((1-x)^3-x^3) * (1-x)^4/((1-x)^4-x^4) * (1-x)^5/((1-x)^5-x^5) * (1-x)^6/((1-x)^6-x^6) * (1-x)^7/((1-x)^7-x^7) *...
and also equals the series:
A(x) = 1 + x*(1-x)/((1-x)-x)^2 + x^4*(1-x)^2/(((1-x)-x)*((1-x)^2-x^2))^2 + x^9*(1-x)^3/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3))^2 + x^16*(1-x)^4/(((1-x)-x)*((1-x)^2-x^2)*((1-x)^3-x^3)*((1-x)^4-x^4))^2 +...
MAPLE
b:= proc(n) option remember;
add(combinat[numbpart](k)*binomial(n, k), k=0..n)
end:
a:= n-> b(n)-b(n-1):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 19 2014
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-1, k]*PartitionsP[k+1], {k, 0, n-1}], {n, 1, 30}]}] (* Vaclav Kotesovec, Jun 25 2015 *)
PROG
(PARI) {a(n)=sum(k=0, n, (binomial(n, k)-if(n>0, binomial(n-1, k)))*numbpart(k))}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(prod(k=1, n, (1-x)^k/((1-x)^k-X^k)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, x^m*(1-x)^(m*(m-1)/2)/prod(k=1, m, ((1-x)^k - X^k))), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(sum(m=0, n, x^(m^2)*(1-X)^m/prod(k=1, m, ((1-x)^k - x^k)^2)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(exp(sum(m=1, n+1, x^m/((1-x)^m-X^m)/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(exp(sum(m=1, n+1, sigma(m)*x^m/(1-X)^m/m)), n)}
(PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff(prod(k=1, n, (1 + x^k/(1-X)^k)^valuation(2*k, 2)), n)}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2012
STATUS
approved
Number of finite sequences of distinct integer partitions with total sum n.
+10
9
1, 1, 2, 7, 13, 35, 87, 191, 470, 1080, 2532, 5778, 13569, 30715, 69583, 160386, 360709, 814597, 1824055, 4102430, 9158405, 20378692, 45215496, 100055269, 221388993, 486872610, 1069846372, 2343798452, 5127889666, 11186214519, 24351106180, 52896439646
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k} A330463(n,k) * k!.
EXAMPLE
The a(1) = 1 through a(4) = 13 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((21)) ((22))
((111)) ((31))
((1)(2)) ((211))
((2)(1)) ((1111))
((1)(11)) ((1)(3))
((11)(1)) ((3)(1))
((11)(2))
((1)(21))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 13 2024
MATHEMATICA
ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp], {comp, Join@@Permutations/@IntegerPartitions[n]}];
Table[Length[Select[ptnseq[n], UnsameQ@@#&]], {n, 0, 10}]
CROSSREFS
This is the case of A055887 with distinct partitions.
The unordered version is A261049.
The case of twice-partitions is A296122.
The case of distinct sums is A336342, constant sums A279787.
The version for sequences of compositions is A358907.
The case of weakly decreasing lengths is A358908.
The case of distinct lengths is A358912.
The version for strict partitions is A358913, distinct case of A304969.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all distinct Omegas.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2022
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^(6^(k-1)).
+10
8
1, 1, 6, 42, 267, 1743, 11234, 72470, 466251, 2996883, 19234836, 123315828, 789682546, 5051601010, 32282443044, 206104519572, 1314652656453, 8378283675645, 53350205335626, 339445117302366, 2158091256282273, 13710402587540469, 87040883294333382, 552205562345916570
OFFSET
0,3
LINKS
FORMULA
a(n) ~ exp(sqrt(2*n/3) - 1/12 - c/6) * 6^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (6^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
MAPLE
N:= 100: # for a(0)..a(N)
G:= mul((1+x^k)^(6^(k-1)), k=1..N):
S:= series(G, x, N+1):
seq(coeff(S, x, k), k=0..N); # Robert Israel, Apr 12 2021
MATHEMATICA
nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(6^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 6^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(6^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved
Number of finite sequences of distinct integer compositions with total sum n.
+10
8
1, 1, 2, 8, 18, 54, 156, 412, 1168, 3200, 8848, 24192, 66632, 181912, 495536, 1354880, 3680352, 9997056, 27093216, 73376512, 198355840, 535319168, 1443042688, 3884515008, 10445579840, 28046885824, 75225974912, 201536064896, 539339293824, 1441781213952
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(4) = 18 sequences:
((1)) ((2)) ((3)) ((4))
((11)) ((12)) ((13))
((21)) ((22))
((111)) ((31))
((1)(2)) ((112))
((2)(1)) ((121))
((1)(11)) ((211))
((11)(1)) ((1111))
((1)(3))
((3)(1))
((1)(12))
((11)(2))
((1)(21))
((12)(1))
((2)(11))
((21)(1))
((1)(111))
((111)(1))
MAPLE
g:= proc(n) option remember; ceil(2^(n-1)) end:
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..32); # Alois P. Heinz, Dec 15 2022
MATHEMATICA
comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
Table[Length[Select[Join@@Table[Tuples[comps/@c], {c, comps[n]}], UnsameQ@@#&]], {n, 0, 10}]
CROSSREFS
For sets instead of sequences we have A098407, partitions A261049.
This is the strict case of A133494.
The case of distinct sums is A336127, constant sums A074854.
The version for sequences of partitions is A358906.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions.
A218482 counts sequences of compositions with weakly decreasing lengths.
A358830 counts twice-partitions with distinct lengths.
A358901 counts partitions with all different Omegas.
A358914 counts twice-partitions into distinct strict partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2022
EXTENSIONS
a(16)-a(29) from Alois P. Heinz, Dec 15 2022
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^(3^(k-1)).
+10
7
1, 1, 3, 12, 39, 138, 469, 1603, 5427, 18372, 61869, 207909, 696537, 2328039, 7762266, 25826142, 85749969, 284171598, 940027872, 3104280885, 10234808334, 33692547249, 110753171784, 363561071175, 1191860487561, 3902350627434, 12761565487173, 41685086306917, 136012008938158
OFFSET
0,3
FORMULA
a(n) ~ exp(2*sqrt(n/3) - 1/6 - c/3) * 3^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (3^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(3^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..28); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 28; CoefficientList[Series[Product[(1 + x^k)^(3^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 3^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 28}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(3^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^(4^(k-1)).
+10
7
1, 1, 4, 20, 86, 390, 1724, 7644, 33697, 148401, 651584, 2855840, 12491276, 54540636, 237733768, 1034610232, 4495832776, 19508749928, 84540638312, 365888222552, 1581630245756, 6829047398156, 29453496620000, 126898489491904, 546183557447366, 2348560270762006, 10089340886428928
OFFSET
0,3
FORMULA
a(n) ~ exp(sqrt(n) - 1/8 - c/4) * 2^(2*n - 3/2) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (4^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(4^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..26); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 26; CoefficientList[Series[Product[(1 + x^k)^(4^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 4^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(4^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^(5^(k-1)).
+10
7
1, 1, 5, 30, 160, 885, 4810, 26185, 142005, 769305, 4159301, 22455876, 121057525, 651737675, 3504241650, 18818709130, 100945053055, 540885242825, 2895159035375, 15481318817450, 82704855762375, 441427664993275, 2354020475714775, 12542918682786300, 66778882780674975
OFFSET
0,3
FORMULA
a(n) ~ exp(2*sqrt(n/5) - 1/10 - c/5) * 5^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (5^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(5^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..24); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 24; CoefficientList[Series[Product[(1 + x^k)^(5^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 5^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 24}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(5^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^(7^(k-1)).
+10
7
1, 1, 7, 56, 413, 3108, 23163, 172711, 1285256, 9556603, 70980000, 526711507, 3904946864, 28926003505, 214095348671, 1583389916081, 11701578676851, 86415267247743, 637732279701496, 4703270177738076, 34664585073280204, 255332979654402524, 1879629724498860397, 13829015594546304600
OFFSET
0,3
FORMULA
a(n) ~ exp(2*sqrt(n/7) - 1/14 - c/7) * 7^(n - 1/4) / (2*sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (7^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(7^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..23); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 23; CoefficientList[Series[Product[(1 + x^k)^(7^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 7^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(7^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved
Expansion of Product_{k>=1} (1 + x^k)^(8^(k-1)).
+10
7
1, 1, 8, 72, 604, 5148, 43544, 368408, 3112262, 26273542, 221605240, 1867736120, 15730022540, 132385106956, 1113413229000, 9358220560136, 78606905495809, 659886123312449, 5536404584185376, 46424396382193376, 389074608184431328, 3259085506224931424, 27286163457927575200
OFFSET
0,3
FORMULA
a(n) ~ exp(sqrt(n/2) - 1/16 - c/8) * 2^(3*n - 7/4) / (sqrt(Pi)*n^(3/4)), where c = Sum_{j>=2} (-1)^j / (j * (8^(j-1) - 1)). - Vaclav Kotesovec, Apr 13 2021
MAPLE
h:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(h(n-i*j, i-1)*binomial(8^(i-1), j), j=0..n/i)))
end:
a:= n-> h(n$2):
seq(a(n), n=0..22); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 22; CoefficientList[Series[Product[(1 + x^k)^(8^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[(-1)^(k/d + 1) d 8^(d - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 22}]
PROG
(PARI) seq(n)={Vec(prod(k=1, n, (1 + x^k + O(x*x^n))^(8^(k-1))))} \\ Andrew Howroyd, Apr 12 2021
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2021
STATUS
approved

Search completed in 0.013 seconds