[go: up one dir, main page]

login
A102866
Number of finite languages over a binary alphabet (set of nonempty binary words of total length n).
19
1, 2, 5, 16, 42, 116, 310, 816, 2121, 5466, 13937, 35248, 88494, 220644, 546778, 1347344, 3302780, 8057344, 19568892, 47329264, 114025786, 273709732, 654765342, 1561257968, 3711373005, 8797021714, 20794198581, 49024480880, 115292809910, 270495295636
OFFSET
0,2
COMMENTS
Analogous to A034899 (which also enumerates multisets of words)
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 64
Stefan Gerhold, Counting finite languages by total word length, INTEGERS 11 (2011), #A44.
Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 27.
FORMULA
G.f.: exp(Sum((-1)^(j-1)/j*(2*z^j)/(1-2*z^j), j=1..infinity)).
Asymptotics (Gerhold, 2011): a(n) ~ c * 2^(n-1)*exp(2*sqrt(n)-1/2) / (sqrt(Pi) * n^(3/4)), where c = exp( Sum_{k>=2} (-1)^(k-1)/(k*(2^(k-1)-1)) ) = 0.6602994483152065685... . - Vaclav Kotesovec, Sep 13 2014
Weigh transform of A000079. - Alois P. Heinz, Jun 25 2018
EXAMPLE
a(2) = 5 because the sets are {a,b}, {aa}, {ab}, {ba}, {bb}.
a(3) = 16 because the sets are {a,aa}, {a,ab}, {a,ba}, {a,bb}, {b,aa}, {b,ab}, {b,ba}, {b,bb}, {aaa}, {aab}, {aba}, {abb}, {baa}, {bab}, {bba}, {bbb}.
MAPLE
series(exp(add((-1)^(j-1)/j*(2*z^j)/(1-2*z^j), j=1..40)), z, 40);
MATHEMATICA
nn = 20; p = Product[(1 + x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] (* Geoffrey Critzer, Mar 07 2012 *)
CoefficientList[Series[E^Sum[(-1)^(k-1)/k*(2*x^k)/(1-2*x^k), {k, 1, 30}], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 13 2014 *)
CROSSREFS
Column k=2 of A292804.
Row sums of A208741 and of A360634.
Sequence in context: A188947 A076958 A163825 * A148368 A148369 A148370
KEYWORD
nonn
AUTHOR
Philippe Flajolet, Mar 01 2005
STATUS
approved