Displaying 1-10 of 55 results found.
Numbers k such that (k! + 3)/3 is prime.
+10
57
3, 5, 6, 8, 11, 17, 23, 36, 77, 93, 94, 109, 304, 497, 1330, 1996, 3027, 3053, 4529, 5841, 20556, 26558, 28167
COMMENTS
a(21) > 20000. The PFGW program has been used to certify all the terms up to a(20), using the "N-1" deterministic test. - Giovanni Resta, Mar 31 2014
PROG
(Magma) [n: n in [0..500] | IsPrime((Factorial(n)+3) div 3)]; // Vincenzo Librandi, Dec 12 2011
CROSSREFS
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199- A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).
EXTENSIONS
1330 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Numbers k for which (k!-3)/3 is prime.
+10
56
4, 6, 12, 16, 29, 34, 43, 111, 137, 181, 528, 2685, 39477, 43697
COMMENTS
Corresponding primes (k!-3)/3 are in A139057.
a(13) > 10000. The PFGW program has been used to certify all the terms up to a(12), using a deterministic test which exploits the factorization of a(n) + 1. - Giovanni Resta, Mar 28 2014
98166 is a member of the sequence but its index is not yet determined. The interval where sieving and tests were not run is [60000,90000]. - Serge Batalov, Feb 24 2015
MATHEMATICA
a = {}; Do[If[PrimeQ[(-3 + n!)/3], AppendTo[a, n]], {n, 1, 1000}]; a
PROG
(PARI) for(n=1, 1000, if(floor(n!/3-1)==n!/3-1, if(ispseudoprime(n!/3-1), print(n)))) \\ Derek Orr, Mar 28 2014
EXTENSIONS
Definition corrected by Derek Orr, Mar 28 2014
Numbers k for which (9 + k!)/9 is prime.
+10
50
8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
COMMENTS
No other k exists, for k <= 6000. - Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
The next number in the sequence, if one exists, is greater than 10944. - Robert Price, Mar 16 2010
Borrowing from A139074 another term in this sequence is 26737. There may be others between 10944 and 26737. - Robert Price, Dec 13 2011
There are no other terms for k < 26738. - Robert Price, Feb 10 2012
EXAMPLE
a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
CROSSREFS
Cf. A139068 (primes of the form (9 + k!)/9).
EXTENSIONS
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
Primes of the form (k! + 2)/2.
+10
43
2, 13, 61, 2521, 20161, 3113510401, 10461394944001, 132626429906095529318154240000001, 30207631531686917818677566034256998753632256000000001
PROG
(PARI) nfactp2d2(n) = { for(x=1, n, y=floor((x!+ 2)/2); if(isprime(y), print1(y", ")) ) }
(Magma) [ a: n in [1..50] | IsPrime(a) where a is (Factorial(n)+2) div 2 ];
Primes of the form (8+k!)/8.
+10
41
631, 45361, 453601, 59875201, 10897286401, 304112751022080001, 3231502092360622080001, 77556050216654929920001, 1105220249217462744317952000001, 332283946848556096005453226376826986289954816000000001
COMMENTS
For numbers k for which (8+k!)/8 is prime see A151913.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 8)/8], AppendTo[a, (n! + 8)/8]], {n, 1, 50}]; a
CROSSREFS
Cf. A020458, A082672, A089085, A089130, A117141, A007749, A139056, A139057, A139058, A139059, A139060, A139061, A139062, A139063, A139064, A139065, A139155, A151913.
EXTENSIONS
Corrected link to sequence of indexes. - Serge Batalov, Feb 17 2015
Primes of the form k!/9 + 1.
+10
35
4481, 611402462201343216650033936533361654773516861440000000001, 234195255375503079690400057633265510581087082006817356924774723468294901747510352675631491470712754833859385753600000000000000000001
COMMENTS
For numbers k for which (9+k!)/9 is prime see A137390.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, [(n! + 9)/9]], {n, 1, 150}]; a
CROSSREFS
Cf. A020458, A007749, A082672, A089085, A089130, A117141, A137390, A139056, A139057, A139058, A139059, A139060, A139061, A139062, A139063, A139064, A139065, A139066, A137390, A139070, A139071, A139072, A139156.
Primes of the form (10+k!)/10.
+10
34
13, 73, 3991681, 47900161, 130767436801, 2585201673888497664001, 40329146112660563558400001, 1376375309122634504631597958158090240000001, 11962222086548019456196316149565771506438373376000000001
COMMENTS
For numbers k for which (10+k!)/10 is prime see A139071.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, [(n! + 10)/10]], {n, 1, 50}]; a
CROSSREFS
Cf. A020458, A082672, A089085, A089130, A117141, A007749, A139056, A139057, A139058, A139059, A139060, A139061, A139062, A139063, A139064, A139065, A139066, A139068, A137390, A139071, A139072, A139157.
3, 2, 3, 31, 1009, 2, 5702401, 631
COMMENTS
Smallest mother factorial prime p of order n, i.e. smallest prime of the form (p!+n)/n where p is prime.
For smallest daughter factorial prime p of order n see A139074.
For smallest father factorial prime p of order n see A139207.
For smallest son factorial prime p of order n see A139206.
a(9)=26737!/9+1 is a 106758 digit (probable) prime. Easily calculated but too large to enter here a(10)=13, a(11)=566092801, a(12)=11. [Robert Price, Jan 19 2011]
MATHEMATICA
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[(Prime[k]! + n)/n]], {n, 1, 8}]; a
CROSSREFS
Cf. A082672, A089085, A089130, A117141, A007749, A139056- A139066, A020458, A139068, A137390, A139070- A139075, A136019, A136020, A136026, A136027.
Numbers n such that (5+n!)/5 is prime.
+10
26
7, 9, 11, 14, 19, 23, 45, 121, 131, 194, 735, 751, 1316, 1372, 2084, 2562, 5678, 5758, 12533, 24222
COMMENTS
For primes of the form (5+n!)/5 see A139059.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 5)/5], AppendTo[a, n]], {n, 1, 751}]; a
PROG
(Magma) [ n: n in [5..734] | IsPrime((Factorial(n)+5) div 5) ];
(PARI) A139058(n) = local(k=(n!+5)\5); if(isprime(k), k, 0);
for(n=5, 800, if( A139058(n)>0, print1(n, ", ")))
CROSSREFS
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199- A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).
Numbers n for which (4+n!)/4 is prime.
+10
25
4, 5, 6, 13, 21, 25, 32, 40, 61, 97, 147, 324, 325, 348, 369, 1290, 1342, 3167, 6612, 8176, 10990
COMMENTS
For primes of the form (4+k!)/4, see A139060.
MATHEMATICA
a = {}; Do[If[PrimeQ[(n! + 4)/4], AppendTo[a, n]], {n, 1, 500}]; a
Select[Range[500], PrimeQ[(4+#!)/4]&] (* Harvey P. Dale, Mar 24 2011 *)
CROSSREFS
Cf. A082672, A089085, A089130, A117141, A007749, A139056, A139057, A139058, A139059, A139060, A139061, A139061, A139062, A139063, A139064, A139065, A139066, A020458, A139068, A137390, A139070, A139071, A139072.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199- A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).
Search completed in 0.017 seconds
|