[go: up one dir, main page]

login
Search: a082393 -id:a082393
     Sort: relevance | references | number | modified | created      Format: long | short | data
Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of x.
+10
6
3, 2, 9, 8, 10, 649, 33, 170, 24, 9801, 1520, 73, 2049, 3482, 48, 66249, 530, 1766319049, 48842, 3480, 2281249, 80, 82, 500001, 62809633, 201, 227528, 962, 158070671986249, 1204353, 4730624, 10610, 6083073, 77563250, 25801741449
OFFSET
1,1
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Table[ PellSolve[ Prime[n]][[1]], {n, 35}] (* Robert G. Wilson v, Jul 22 2005 *)
f[n_] := Block[{p = Prime[n]}, FindInstance[x^2 == p*y^2 + 1 && x > 0 && y > 0, {x, y}, Integers][[1, 1, 2]]]; Array[f, 40] (* Robert G. Wilson v, Nov 16 2012 *)
CROSSREFS
Values of y are in A081234. Equals A002350(p). Cf. A082393.
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Apr 18 2003
EXTENSIONS
a(8) - a(35) from Robert G. Wilson v, Jul 22 2005
STATUS
approved
Let p = n-th prime of the form 4k+3, take the solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and smallest y >= 1; sequence gives value of y.
+10
6
1, 3, 3, 39, 5, 273, 531, 7, 69, 5967, 413, 9, 9, 22419, 93, 419775, 927, 6578829, 140634693, 5019135, 13, 313191, 650783, 1153080099, 19162705353, 15, 15, 400729, 231957, 8579, 7044978537, 8219541, 5052633, 957397, 153109862634573, 34443, 19
OFFSET
1,2
REFERENCES
C. Stanley Ogilvy, Tomorrow's Math, 1972, p. 119.
LINKS
EXAMPLE
For n=3, p = 11, x=10, y=3 since we have 10^2 = 11*3^2 + 1, so a(3) = 3.
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Transpose[ PellSolve /@ Select[ Prime[ Range[72]], Mod[ #, 4] == 3 &]][[2]] (* Robert G. Wilson v, Sep 02 2004 *)
PROG
(PARI) p4xp3(n, m) = { forstep(p=3, m, 4, for(y=1, n, if(isprime(p), x=y*y*p+1; if(issquare(x), print1(y" "); break; ) ) ) ) }
CROSSREFS
Values of x are in A081231. Equals A002349(p). Cf. A082393.
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Apr 14 2003
EXTENSIONS
More terms from Robert G. Wilson v, Apr 15 2003; recomputed Sep 03 2004
STATUS
approved
Let p = n-th prime of the form 4k+3, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of x.
+10
4
2, 8, 10, 170, 24, 1520, 3482, 48, 530, 48842, 3480, 80, 82, 227528, 962, 4730624, 10610, 77563250, 1728148040, 64080026, 168, 4190210, 8994000, 16266196520, 278354373650, 224, 226, 6195120, 3674890, 139128, 115974983600, 138274082
OFFSET
1,1
LINKS
EXAMPLE
For n=3, p = 11, x=10, y=3 since we have 10^2 = 11*3^2 + 1, so a(3) = 10.
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Transpose[ PellSolve /@ Select[ Prime[ Range[72]], Mod[ #, 4] == 3 &]][[1]] (* Robert G. Wilson v, Sep 02 2004 *)
CROSSREFS
Values of y are in A082394. Equals A002350(p). Cf. A082393.
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Apr 18 2003
EXTENSIONS
More terms from Robert G. Wilson v, Sep 02 2004
STATUS
approved
Let p = n-th prime of the form 4k+1, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of x.
+10
4
9, 649, 33, 9801, 73, 2049, 66249, 1766319049, 2281249, 500001, 62809633, 201, 158070671986249, 1204353, 6083073, 25801741449, 46698728731849, 2499849, 2469645423824185801, 6224323426849, 393, 5848201, 1072400673
OFFSET
1,1
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
For n = 1, p = 5, x=9, y=4 since 9^2 = 5*4^2 + 1, so a(1) = 9.
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cof, n, s}, cof = ContinuedFraction[Sqrt[m]]; n = Length[Last[cof]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ContinuedFraction[Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; First /@ PellSolve /@ Select[Prime@Range@54, Mod[ #, 4] == 1 &] (* Robert G. Wilson v *)
CROSSREFS
Values of y are in A082393. Cf. A082394, A081233. Equals A002350(p).
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Apr 18, 2003
EXTENSIONS
More terms from Robert G. Wilson v, Feb 28 2006
STATUS
approved
Let p = n-th prime, take smallest solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with x and y >= 1; sequence gives value of y.
+10
4
2, 1, 4, 3, 3, 180, 8, 39, 5, 1820, 273, 12, 320, 531, 7, 9100, 69, 226153980, 5967, 413, 267000, 9, 9, 53000, 6377352, 20, 22419, 93, 15140424455100, 113296, 419775, 927, 519712, 6578829, 2113761020, 140634693, 3726964292220, 5019135, 13, 190060
OFFSET
1,1
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[Last[cf]]; If[OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; Table[ PellSolve[ Prime[n]][[2]], {n, 40}] (* Robert G. Wilson v, Jul 22 2005 *)
CROSSREFS
Values of x are in A081233. Equals A002349(p). Cf. A082393.
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Apr 18 2003
EXTENSIONS
More terms (a(8) - a(40)) from Robert G. Wilson v, Jul 22 2005
STATUS
approved
Solutions y of the Mordell equation y^2 = x^3 - 3a^2 + 1 for a = 0,1,2, ... (solutions x are given by the sequence A000466)
+10
1
0, 5, 58, 207, 500, 985, 1710, 2723, 4072, 5805, 7970, 10615, 13788, 17537, 21910, 26955, 32720, 39253, 46602, 54815, 63940, 74025, 85118, 97267, 110520, 124925, 140530, 157383, 175532, 195025, 215910, 238235, 262048, 287397, 314330, 342895
OFFSET
1,2
COMMENTS
For many values of k for the equation y^2 = x^3 + k, all the solutions are known. For example, we have solutions for k=-2: (x,y) = (3,-5) and (3,5). A complete resolution for all integers k is unknown. Theorem: Let k be < -1, free of square factors, with k == 2 or 3 (mod 4). Suppose that the number of classes h(Q(sqrt(k))) is not divisible by 3. Then the equation y^2 = x^3 + k admits integer solutions if and only if k = 1 - 3a^2 or 1 - 3a^2 where a is an integer. In this case, the solutions are x = a^2 - k, y = a(a^2 + 3k) or -a(a^2 + 3k) (the first reference gives the proof of this theorem). With k = -1 - 3a^2, we obtain the solutions x = 4a^2 + 1, y = a(8a^2 + 3) or -a(8a^2 + 3). For the case k = 1 - 3a^2, we obtain the solution x = 4a^2 - 1 given by the sequence A000466.
REFERENCES
T. Apostol, Introduction to Analytic Number Theory, Springer, 1976
D. Duverney, Theorie des nombres (2e edition), Dunod, 2007, p.151
LINKS
W. J. Ellison, F. Ellison, J. Pesek, C. E. Stall & D. S. Stall, The diophantine equation y^2 + k = x^3, J. Number Theory 4 (1972), 107-117.
Helmut Richter, Solutions of Mordell's equation y^2 = x^3 + k (solutions for 0<k<1008).
School of Mathematics and Statistics, University of St Andrews, Louis Joel Mordell.
Eric Weisstein's World of Mathematics, Mordell Curve.
D. J. Wright, Mordell's Equation.
FORMULA
y = a*(8*a^2 - 3).
a(n) = sqrt(A000466(n)^3 - A080663(n)). - Artur Jasinski, Nov 26 2011
From Colin Barker, Apr 26 2012: (Start)
a(n) = 8*n^3 - 24*n^2 + 21*n - 5.
G.f.: x^2*(5 + 38*x + 5*x^2)/(1 - x)^4. (End)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jul 02 2012
E.g.f.: exp(x)*(5*x + 24*x^2 + 8*x^3). - Stefano Spezia, Dec 04 2018
EXAMPLE
With a=3, x = 35 and y = 207, and then 207^2 = 35^2 - 26.
MAPLE
for a from 0 to 100 do : z := evalf(a*(8*a^2 - 3)) : print (z) :od :
MATHEMATICA
CoefficientList[Series[x*(5+38*x+5*x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 02 2012 *)
CoefficientList[Series[E^x (5 x + 24 x^2 + 8 x^3), {x, 0, 40}], x]*Table[n!, {n, 0, 40}] (* Stefano Spezia, Dec 04 2018 *)
PROG
(Magma) I:=[0, 5, 58, 207]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 02 2012
CROSSREFS
Diophantine equations: see also Pellian equation: (A081233, A081234), (A081231, A082394), (A081232, A082393); Mordell equation: A053755, A173200; Diophantine equations: A006452, A006451, A006454.
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Feb 12 2010
STATUS
approved
y-values in the solutions to x^2 - 313*y^2 = 1.
+10
0
0, 1819380158564160, 117124856755987405647781716823680, 7540058082713667504003446125203741470945194284480, 485400601250164750241979240919394389707542655611270208094258863360
OFFSET
1,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1996, p. 248.
LINKS
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 313
FORMULA
a(n) = 64376241658269698*a(n-1) - a(n-2) with a(1) = 0 and a(2) = 1819380158564160.
G.f.: 1819380158564160*x^2/(1 - 64376241658269698*x + x^2).
MATHEMATICA
LinearRecurrence[{64376241658269698, -1}, {0, 1819380158564160}, 5]
PROG
(Magma) I:=[0, 1819380158564160]; [n le 2 select I[n] else 64376241658269698*Self(n-1)-Self(n-2): n in [1..10]]; // Vincenzo Librandi, May 16 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Search completed in 0.006 seconds