[go: up one dir, main page]

login
A082393
Let p = n-th prime of the form 4k+1, take the integer solution (x,y) to the Pellian equation x^2 - p*y^2 = 1 with the smallest y >= 1; sequence gives value of y.
8
4, 180, 8, 1820, 12, 320, 9100, 226153980, 267000, 53000, 6377352, 20, 15140424455100, 113296, 519712, 2113761020, 3726964292220, 190060, 183567298683461940, 448036604040, 28, 386460, 70255304, 649641205044600
OFFSET
1,1
REFERENCES
C. Stanley Ogilvy, Tomorrow's Math, 1972, p. 119.
LINKS
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
For n = 1, p = 5, x=9, y=4 since 9^2 = 5*4^2 + 1, so a(1) = 4.
MATHEMATICA
PellSolve[(m_Integer)?Positive] := Module[{cf, n, s}, cf = ContinuedFraction[ Sqrt[m]]; n = Length[ Last[cf]]; If[ OddQ[n], n = 2*n]; s = FromContinuedFraction[ ContinuedFraction[ Sqrt[m], n]]; {Numerator[s], Denominator[s]}]; t = {}; Last /@ PellSolve /@ Select[Prime@Range@54, Mod[ #, 4] == 1 &] (* Robert G. Wilson v, Feb 28 2006 *)
PROG
(PARI) p4xp1(n, m) = { forstep(p=1, m, 4, for(y=1, n, if(isprime(p), x=y*y*p+1; if(issquare(x), print1(y" "); break; ) ) ) ) }
CROSSREFS
Values of x are in A081232. Cf. A082394, A081233, A081234. Equals A002349(p).
Sequence in context: A127606 A041945 A300387 * A176351 A330771 A263436
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Apr 14 2003
EXTENSIONS
More terms from Robert G. Wilson v, Feb 28 2006
STATUS
approved