[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a081733 -id:a081733
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2^n*E(n, 1) where E(n, x) are the Euler polynomials.
+10
53
1, 1, 0, -2, 0, 16, 0, -272, 0, 7936, 0, -353792, 0, 22368256, 0, -1903757312, 0, 209865342976, 0, -29088885112832, 0, 4951498053124096, 0, -1015423886506852352, 0, 246921480190207983616, 0, -70251601603943959887872, 0, 23119184187809597841473536, 0
OFFSET
0,4
COMMENTS
Previous name was: a(n) = Sum_{k=0..n-1} (-1)^(k)*C(n-1,k)*a(n-1-k)*a(k) for n>0 with a(0)=1.
Factorials have a similar recurrence: f(n) = Sum_{k=0..n-1} C(n-1,k)*f(n-1-k)*f(k), n > 0.
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A155585(x) = Sum_{k=0..x-1} T(x,k)*(-1)^k. See Mathematica code below. - John M. Campbell, Nov 16 2011
For the difference table and the relation to the Seidel triangle see A239005. - Paul Curtz, Mar 06 2014
From Tom Copeland, Sep 29 2015: (Start)
Let z(t) = 2/(e^(2t)+1) = 1 + tanh(-t) = e.g.f.(-t) for this sequence = 1 - t + 2*t^3/3! - 16*t^5/5! + ... .
dlog(z(t))/dt = -z(-t), so the raising operators that generate Appell polynomials associated with this sequence, A081733, and its reciprocal, A119468, contain z(-d/dx) = e.g.f.(d/dx) as the differential operator component.
dz(t)/dt = z*(z-2), so the assorted relations to a Ricatti equation, the Eulerian numbers A008292, and the Bernoulli numbers in the Rzadkowski link hold.
From Michael Somos's formula below (drawing on the Edwards link), y(t,1)=1 and x(t,1) = (1-e^(2t))/(1+e^(2t)), giving z(t) = 1 + x(t,1). Compare this to the formulas in my list in A008292 (Sep 14 2014) with a=1 and b=-1,
A) A(t,1,-1) = A(t) = -x(t,1) = (e^(2t)-1)/(1+e^(2t)) = tanh(t) = t + -2*t^3/3! + 16*t^5/5! + -272*t^7/7! + ... = e.g.f.(t) - 1 (see A000182 and A000111)
B) Ainv(t) = log((1+t)/(1-t))/2 = tanh^(-1)(t) = t + t^3/3 + t^5/5 + ..., the compositional inverse of A(t)
C) dA/dt = (1-A^2), relating A(t) to a Weierstrass elliptic function
D) ((1-t^2)d/dt)^n t evaluated at t=0, a generator for the sequence A(t)
F) FGL(x,y)= (x+y)/(1+xy) = A(Ainv(x) + Ainv(y)), a related formal group law corresponding to the Lorentz FGL (Lorentz transformation--addition of parallel velocities in special relativity) and the Atiyah-Singer signature and the elliptic curve (1-t^2)*s = t^3 in Tate coordinates according to the Lenart and Zainoulline link and the Buchstaber and Bunkova link (pp. 35-37) in A008292.
A133437 maps the reciprocal odd natural numbers through the refined faces of associahedra to a(n).
A145271 links the differential relations to the geometry of flow maps, vector fields, and thereby formal group laws. See Mathworld for links of tanh to other geometries and statistics.
Since the a(n) are related to normalized values of the Bernoulli numbers and the Riemann zeta and Dirichlet eta functions, there are links to Witten's work on volumes of manifolds in two-dimensional quantum gauge theories and the Kervaire-Milnor formula for homotopy groups of hyperspheres (see my link below).
See A101343, A111593 and A059419 for this and the related generator (1 + t^2) d/dt and associated polynomials. (End)
With the exception of the first term (1), entries are the alternating sums of the rows of the Eulerian triangle, A008292. - Gregory Gerard Wojnar, Sep 29 2018
LINKS
P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 28.
H. M. Edwards, A normal form for elliptic curves, Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 3, 393-422. see section 12, pp. 410-411.
Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
G. Rzadkowski, Bernoulli numbers and solitons-revisited, Journal of Nonlinear Math. Physics, 1711, pp. 121-126.
FORMULA
E.g.f.: exp(x)*sech(x) = exp(x)/cosh(x). (See A009006.) - Paul Barry, Mar 15 2006
Sequence of absolute values is A009006 (e.g.f. 1+tan(x)).
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = 2^n*E_{n}(1) where E_{n}(x) are the Euler polynomials. - Peter Luschny, Jan 26 2009
a(n) = EL_{n}(-1) where EL_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n+1) = (4^n-2^n)*B_n(1)/n, where B_{n}(x) are the Bernoulli polynomials (B_n(1) = B_n for n <> 1). - Peter Luschny, Apr 22 2009
G.f.: 1/(1-x+x^2/(1-x+4*x^2/(1-x+9*x^2/(1-x+16*x^2/(1-...))))) (continued fraction). - Paul Barry, Mar 30 2010
G.f.: -log(x/(exp(x)-1))/x = Sum_{n>=0} a(n)*x^n/(2^(n+1)*(2^(n+1)-1)*n!). - Vladimir Kruchinin, Nov 05 2011
E.g.f.: exp(x)/cosh(x) = 2/(1+exp(-2*x)) = 2/(G(0) + 1); G(k) = 1 - 2*x/(2*k + 1 - x*(2*k+1)/(x - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2011
E.g.f. is x(t,1) + y(t,1) where x(t,a) and y(t,a) satisfy y(t,a)^2 = (a^2 - x(t,a)^2) / (1 - a^2 * x(t,a)^2) and dx(t,a) / dt = y(t,a) * (1 - a * x(t,a)^2) and are the elliptic functions of Edwards. - Michael Somos, Jan 16 2012
E.g.f.: 1/(1 - x/(1+x/(1 - x/(3+x/(1 - x/(5+x/(1 - x/(7+x/(1 - x/(9+x/(1 +...))))))))))), a continued fraction. - Paul D. Hanna, Feb 11 2012
E.g.f. satisfies: A(x) = Sum_{n>=0} Integral( A(-x) dx )^n / n!. - Paul D. Hanna, Nov 25 2013
a(n) = -2^(n+1)*Li_{-n}(-1). - Peter Luschny, Jun 28 2012
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 + (k+1)*(k+2)*x^2/T(k+1)).
E.g.f.: exp(x)/cosh(x) = 1 + x/S(0) where S(k) = (2*k+1) + x^2/S(k+1).
E.g.f.: 1 + x/(U(0)+x) where U(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))).
E.g.f.: 1 + tanh(x) = 4*x/(G(0)+2*x) where G(k) = 1 - (k+1)/(1 - 2*x/(2*x + (k+1)^2/G(k+1)));
G.f.: 1 + x/G(0) where G(k) = 1 + 2*x^2*(2*k+1)^2 - x^4*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1) (due to Stieltjes).
E.g.f.: 1 + x/(G(0) + x) where G(k) = 1 - 2*x/(1 + (k+1)/G(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*(k+1)/( 1 - x*(k+1)/Q(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*k^2 + x/(1 - x*(k+1)^2/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - 2*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/Q(k+1)).
E.g.f.: 1 + x*Q(0) where Q(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/Q(k+1)).
G.f.: 2 - T(0)/(1+x) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1+x)^2/T(k+1)).
E.g.f.: 1/(x - Q(0)) where Q(k) = 4*k^2 - 1 + 2*x + x^2*(2*k-1)*(2*k+3)/Q(k+1). (End)
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A001057. - Michael Somos, Jan 03 2013
From Paul Curtz, Mar 06 2014: (Start)
a(2n) = A000007(n).
a(2n+1) = (-1)^n*A000182(n+1).
a(n) is the binomial transform of A122045(n).
a(n) is the row sum of A081658. For fractional Euler numbers see A238800.
a(n) + A122045(n) = 2, 1, -1, -2, 5, 16, ... = -A163982(n).
a(n) - A122045(n) = -A163747(n).
a(n) is the Akiyama-Tanigawa transform applied to 1, 0, -1/2, -1/2, -1/4, 0, ... = A046978(n+3)/A016116(n). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/2) - zeta(-n, 1)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n)= 2^(n + 1)*(2^(n + 1) - 1)*Bernoulli(n + 1, 1)/(n + 1) . (From Bill Gosper, Oct 28 2015) - N. J. A. Sloane, Oct 28 2015 [See the above comment from Peter Luschny, Apr 22 2009.]
a(n) = -(n mod 2)*((-1)^n + Sum_{k=1..n-1} (-1)^k*C(n,k)*a(n-k)) for n >= 1. - Peter Luschny, Jun 01 2016
a(n) = (-2)^n*F_{n}(-1/2), where F_{n}(x) is the Fubini polynomial. - Peter Luschny, May 21 2021
EXAMPLE
E.g.f.: 1 + x - 2*x^3/3! + 16*x^5/5! - 272*x^7/7! + 7936*x^9/9! -+ ... = exp(x)/cosh(x).
O.g.f.: 1 + x - 2*x^3 + 16*x^5 - 272*x^7 + 7936*x^9 - 353792*x^11 +- ...
O.g.f.: 1 + x/(1+2*x) + 2!*x^2/((1+2*x)*(1+4*x)) + 3!*x^3/((1+2*x)*(1+4*x)*(1+6*x)) + ...
MAPLE
A155585 := n -> 2^n*euler(n, 1): # Peter Luschny, Jan 26 2009
a := proc(n) option remember; `if`(n::even, 0^n, -(-1)^n - add((-1)^k*binomial(n, k) *a(n-k), k = 1..n-1)) end: # Peter Luschny, Jun 01 2016
# Or via the recurrence of the Fubini polynomials:
F := proc(n) option remember; if n = 0 then return 1 fi;
expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
a := n -> (-2)^n*subs(x = -1/2, F(n)):
seq(a(n), n = 0..30); # Peter Luschny, May 21 2021
MATHEMATICA
a[m_] := Sum[(-2)^(m - k) k! StirlingS2[m, k], {k, 0, m}] (* Peter Luschny, Apr 29 2009 *)
poly[q_] := 2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] := First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Table[Sum[T[x, k]*(-1)^k, {k, 0, x-1}], {x, 1, 16}] (* John M. Campbell, Nov 16 2011 *)
f[n_] := (-1)^n 2^(n+1) PolyLog[-n, -1]; f[0] = -f[0]; Array[f, 27, 0] (* Robert G. Wilson v, Jun 28 2012 *)
PROG
(PARI) a(n)=if(n==0, 1, sum(k=0, n-1, (-1)^(k)*binomial(n-1, k)*a(n-1-k)*a(k)))
(PARI) a(n)=local(X=x+x*O(x^n)); n!*polcoeff(exp(X)/cosh(X), n)
(PARI) a(n)=polcoeff(sum(m=0, n, m!*x^m/prod(k=1, m, 1+2*k*x+x*O(x^n))), n) \\ Paul D. Hanna, Jul 20 2011
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( 1 + sinh(x + A) / cosh(x + A), n))} /* Michael Somos, Jan 16 2012 */
(PARI) a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, intformal(subst(A, x, -x)+x*O(x^n))^k/k!)); n!*polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 25 2013
(Sage)
def A155585(n) :
if n == 0 : return 1
return add(add((-1)^(j+1)*binomial(n+1, k-j)*j^n for j in (0..k)) for k in (1..n))
[A155585(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
(Sage)
def A155585_list(n): # Akiyama-Tanigawa algorithm
A = [0]*(n+1); R = []
for m in range(n+1) :
d = divmod(m+3, 4)
A[m] = 0 if d[1] == 0 else (-1)^d[0]/2^(m//2)
for j in range(m, 0, -1) :
A[j - 1] = j * (A[j - 1] - A[j])
R.append(A[0])
return R
A155585_list(30) # Peter Luschny, Mar 09 2014
(Python)
from sympy import bernoulli
def A155585(n): return (((2<<(m:=n+1))-2)*bernoulli(m)<<m-2)//(m>>1) if n&1 else (0 if n else 1) # Chai Wah Wu, Apr 14 2023
CROSSREFS
Equals row sums of A119879. - Johannes W. Meijer, Apr 20 2011
(-1)^n*a(n) are the alternating row sums of A123125. - Wolfdieter Lang, Jul 12 2017
KEYWORD
sign,easy
AUTHOR
Paul D. Hanna, Jan 24 2009
EXTENSIONS
New name from Peter Luschny, Mar 12 2015
STATUS
approved
Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(n,2j)*binomial(n-2j,k).
+10
8
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 1, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 1, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1
OFFSET
0,4
COMMENTS
Product of Pascal's triangle A007318 and A119467. Row sums are A007051. Diagonal sums are A113225.
Variant of A080928, A115068 and A082137. - R. J. Mathar, Feb 09 2010
Matrix inverse of the Euler tangent triangle A081733. - Peter Luschny, Jul 18 2012
Central column: T(2*n,n) = A069723(n). - Peter Luschny, Jul 22 2012
Subtriangle of the triangle in A198792. - Philippe Deléham, Nov 10 2013
FORMULA
G.f.: (1 - x - xy)/(1 - 2x - 2x*y + 2x^2*y + x^2*y^2).
Number triangle T(n,k) = Sum_{j=0..n} binomial(n,j)*binomial(j,k)*(1+(-1)^(j-k))/2.
Define matrix: A(n,m,k) = If[m < n, 1, -1];
p(x,k) = CharacteristicPolynomial[A[n,m,k],x]; then t(n,m) = coefficients(p(x,n)). - Roger L. Bagula and Gary W. Adamson, Jan 25 2009
E.g.f.: exp(x*z)/(1-tanh(x)). - Peter Luschny, Aug 01 2012
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) - T(n-2,k-2) for n >= 2, T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 10 2013
E.g.f.: [(e^(2t)+1)/2] e^(tx) = e^(P.(x)t), so this is an Appell sequence with lowering operator D = d/dx and raising operator R = x + 2/(e^(-2D)+1), i.e., D P_n(x) = n P_{n-1}(x) and R p_n(x) = P_{n+1}(x) where P_n(x) = [(x+2)^n + x^n]/2. Also, (P.(x)+y)^n = P_n(x+y), umbrally. R = x + 1 + D - 2 D^3/3! + ... contains the e.g.f.(D) mod signs of A009006 and A155585 and signed, aerated A000182, the zag numbers, so the unsigned differential component 2/[e^(2D)+1] = 2 Sum_{n >= 0} Eta(-n) (-2D)^n/n!, where Eta(s) is the Dirichlet eta function, and 2 *(-2)^n Eta(-n) = (-1)^n (2^(n+1)-4^(n+1)) Zeta(-n) = (2^(n+1)-4^(n+1)) B(n+1)/(n+1) with Zeta(s), the Riemann zeta function, and B(n), the Bernoulli numbers. The polynomials PI_n(x) of A081733 are the umbral compositional inverses of this sequence, i.e., P_n(PI.(x)) = x^n = PI_n(P.(x)) under umbral composition. Aside from the signs and the main diagonals, multiplying this triangle by 2 gives the face-vectors of the hypercubes A038207. - Tom Copeland, Sep 27 2015
T(n,k) = 2^(n-k-1+0^(n-k))*binomial(n, k). - Peter Luschny, Nov 10 2017
EXAMPLE
Triangle begins
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
8, 16, 12, 4, 1;
16, 40, 40, 20, 5, 1;
32, 96, 120, 80, 30, 6, 1;
64, 224, 336, 280, 140, 42, 7, 1;
128, 512, 896, 896, 560, 224, 56, 8, 1;
256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1;
512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
MAPLE
A119468_row := proc(n) local s, t, k;
s := series(exp(z*x)/(1-tanh(x)), x, n+2);
t := factorial(n)*coeff(s, x, n); seq(coeff(t, z, k), k=(0..n)) end:
for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012
# Alternatively:
T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n, k):
for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Nov 10 2017
MATHEMATICA
A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *)
Table[Sum[Binomial[n, 2j]Binomial[n-2j, k], {j, 0, n-k}], {n, 0, 10}, {k, 0, n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
PROG
(Sage)
R = PolynomialRing(QQ, 'x')
def p(n, x) :
return 1 if n==0 else add((-1)^n*binomial(n, k)*(x^(n-k)-1) for k in range(n))
def A119468_row(n):
x = R.gen()
return [abs(cf) for cf in list((p(n, x-1)-p(n, x+1))/2+x^n)]
for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012
CROSSREFS
A082137 read as triangle with rows reversed.
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 21 2006
STATUS
approved
T(n, k) = 2^n * n! * [x^k] [z^n] (4*exp(x*z))/(exp(z) + 1)^2, triangle read by rows, for 0 <= k <= n. Coefficients of Euler polynomials of order 2.
+10
6
1, -2, 2, 2, -8, 4, 4, 12, -24, 8, -16, 32, 48, -64, 16, -32, -160, 160, 160, -160, 32, 272, -384, -960, 640, 480, -384, 64, 544, 3808, -2688, -4480, 2240, 1344, -896, 128, -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256
OFFSET
0,2
COMMENTS
T(m, n, k) = 2^n * n! * [x^k] [z^n] (2^m*exp(x*z))/(exp(z) + 1)^m are the coefficients of the generalized Euler polynomials (or Euler polynomials of higher order).
The classical case (m=1) is in A004174, this sequence is case m=2. A different normalization for m=1 is given in A058940 and for m=2 in A326485.
Generalized Euler numbers are 2^n*Sum_{k=0..n} T(m, n, k)*(1/2)^k. The classical Euler numbers are in A122045 and for m=2 in A326483.
LINKS
NIST Digital Library of Mathematical Functions, §24.16(i), Higher-Order Analogs (of Bernoulli and Euler Polynomials), Release 1.0.23 of 2019-06-15.
EXAMPLE
Triangle starts:
[0] [ 1]
[1] [ -2, 2]
[2] [ 2, -8, 4]
[3] [ 4, 12, -24, 8]
[4] [ -16, 32, 48, -64, 16]
[5] [ -32, -160, 160, 160, -160, 32]
[6] [ 272, -384, -960, 640, 480, -384, 64]
[7] [ 544, 3808, -2688, -4480, 2240, 1344, -896, 128]
[8] [ -7936, 8704, 30464, -14336, -17920, 7168, 3584, -2048, 256]
[9] [-15872, -142848, 78336, 182784, -64512, -64512, 21504, 9216, -4608, 512]
MAPLE
E2 := proc(n) (4*exp(x*z))/(exp(z) + 1)^2;
series(%, z, 48); 2^n*n!*coeff(%, z, n) end:
ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(E2(n), x), n=0..9)]);
MATHEMATICA
T[n_, k_] := 2^n n! SeriesCoefficient[4 Exp[x z]/(Exp[z]+1)^2, {z, 0, n}, {x, 0, k}];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 15 2019 *)
CROSSREFS
Let E2_{n}(x) = Sum_{k=0..n} T(n,k) x^k. Then E2_{n}(1) = A155585(n+1),
E2_{n}(0) = A326481(n), E2_{n}(-1) = A326482(n), 2^n*E2_{n}(1/2) = A326483(n),
2^n*E2_{n}(-1/2) = A326484(n), [x^n] E2_{n}(x) = A000079(n).
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Jul 11 2019
STATUS
approved
(-2)^n * Euler_polynomial(n,1) * binomial(2*n,n).
+10
3
1, -2, 0, 40, 0, -4032, 0, 933504, 0, -385848320, 0, 249576198144, 0, -232643283353600, 0, 295306112919306240, 0, -489743069731226910720, 0, 1028154317960939805081600, 0, -2665182817368374114506506240, 0, 8360422228704533182913131315200
OFFSET
0,2
COMMENTS
Central column of the Euler tangent triangle, a(n) = A081733(2*n,n).
Also a(n) = -A162660(2*n,n) for n > 0. - Peter Luschny, Jul 23 2012
FORMULA
a(n) = [x^n](skp(2*n,x+1)-skp(2*n,x-1))/2) where skp(n,x) are the Swiss-Knife polynomials A153641.
a(n) = (n+1)*2^n*(2*n-1)!!*sum_{k=1..n}sum_{j=0..k}(-1)^(k-j)*(k-j)^n/(j!*(n-j+1)!) for n > 0. - Peter Luschny, Jul 23 2012
MAPLE
A214447 := n -> binomial(2*n, n)*(-2)^n*euler(n, 1):
seq(A214447(n), n=0..23);
PROG
(Sage)
from mpmath import mp, fac2
mp.dps = 32
def A214447(n) : return (n+1)*2^n*fac2(2*n-1)*add(add((-1)^(k-j)*(k-j)^n / (factorial(j)*factorial(n-j+1)) for j in (0..k)) for k in (1..n))
print([int(A214447(n)) for n in (0..19)]) # Peter Luschny, Jul 23 2012
CROSSREFS
KEYWORD
sign
AUTHOR
Peter Luschny, Jul 18 2012
STATUS
approved
Triangle read by rows: coefficients of Genocchi polynomials G(n,x); n times the Euler polynomials.
+10
0
1, 2, -1, 3, -3, 0, 4, -6, 0, 1, 5, -10, 0, 5, 0, 6, -15, 0, 15, 0, -3, 7, -21, 0, 35, 0, -21, 0, 8, -28, 0, 70, 0, -84, 0, 17, 9, -36, 0, 126, 0, -252, 0, 153, 0, 10, -45, 0, 210, 0, -630, 0, 765, 0, -155, 11, -55, 0, 330, 0, -1386, 0, 2805, 0, -1705, 0, 12, -66, 0, 495
OFFSET
1,2
COMMENTS
The Genocchi numbers A001489 appear as constant term of every second polynomial and as the negative sum of its coefficients.
REFERENCES
Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, pp. 573-574.
LINKS
FORMULA
E.g.f.: Sum_{n >= 1} G(n, x)*t^n/n! = 2*t*e^(x*t)/(1 + e^t).
G(n, x) = Sum_{k=1..n} k*C(n, k)* Euler(k-1, 0)*x^(n-k). - Peter Luschny, Jul 13 2009
G(n, x) = n*Euler(n-1,x) = Sum_{k=0..n} binomial(n,k)*Bernoulli(k)*2*(1-2^k)*x^(n-k), with the Euler polynomials Euler(n,x) (see A060096/A060097) and Bernoulli numbers A027641/A027642. See the Graham et al. reference, pp. 573-574, Exercise 7.52. - Wolfdieter Lang, Mar 13 2017
EXAMPLE
G(1,x) = 1
G(2,x) = 2*x - 1
G(3,x) = 3*x^2 - 3*x
G(4,x) = 4*x^3 - 6*x^2 + 1
G(5,x) = 5*x^4 - 10*x^3 + 5*x
G(6,x) = 6*x^5 - 15*x^4 + 15*x^2 - 3
G(7,x) = 7*x^6 - 21*x^5 + 35*x^3 - 21*x
MAPLE
p := proc(n, x) local j, k; add(binomial(n, k)*add(binomial(k, j)*2^j*bernoulli(j), j=0..k-1)*x^(n-k), k=0..n) end;
seq(print(sort(p(n, x))), n=1..8); # Peter Luschny, Jul 07 2009
MATHEMATICA
g[n_, x_] := Sum[ k Binomial[n, k] EulerE[k-1, 0] x^(n-k), {k, 1, n}]; Table[ CoefficientList[g[n, x], x] // Reverse, {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2013, after Peter Luschny *)
PROG
(PARI) G(n)=subst(polcoeff(serlaplace(2*x*exp(x*y)/(exp(x)+1)), n), y, x)
CROSSREFS
A001489(n) = G(2n, 0) = -G(2n, 1). Cf. A081733.
KEYWORD
tabl,sign,easy
AUTHOR
Ralf Stephan, Sep 08 2004
STATUS
approved

Search completed in 0.009 seconds