[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a081105 -id:a081105
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0) = 1, a(n) = (n + 4)*4^(n-1) for n >= 1.
+10
6
1, 5, 24, 112, 512, 2304, 10240, 45056, 196608, 851968, 3670016, 15728640, 67108864, 285212672, 1207959552, 5100273664, 21474836480, 90194313216, 377957122048, 1580547964928, 6597069766656, 27487790694400, 114349209288704, 474989023199232, 1970324836974592, 8162774324609024
OFFSET
0,2
COMMENTS
a(n) = det(M(n)) where M(n) is the n X n matrix defined by m(i,i) = 5, m(i,j) = i/j.
Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 3*m(i-1,j-1).
4th binomial transform of (1,1,0,0,0,0,...). - Paul Barry, Mar 07 2003
Number of independent vertex subsets of the graph obtained by attaching two pendant edges to each vertex of the complete graph K_n (see A235113). Example: a(1)=5; indeed, K_1 is the one vertex graph and after attaching two pendant vertices we obtain the path graph ABC; the independent vertex subsets are: empty, {A}, {B}, {C}, and {A,C}. - Emeric Deutsch, Jan 13 2014
Row sums of A235113.
LINKS
F. Disanto, A. Frosini, R. Pinzani and S. Rinaldi, A closed formula for the number of convex permutominoes, arXiv:math/0702550 [math.CO], 2007.
FORMULA
a(n) = 8*a(n-1)-16*a(n-2), a(0) = 1, a(1) = 5. - Paul Barry, Mar 07 2003
G.f.: (1 - 3*x)/(1 - 4*x)^2. - Philippe Deléham, Dec 11 2008
From Amiram Eldar, Jan 14 2021: (Start)
Sum_{n>=0} 1/a(n) = 1024*log(4/3) - 880/3.
Sum_{n>=0} (-1)^n/a(n) = 688/3 - 1024*log(5/4). (End)
E.g.f.: exp(4*x)*(1 + x). - Stefano Spezia, Mar 05 2023
MATHEMATICA
LinearRecurrence[{8, -16}, {1, 5}, 22] (* Jean-François Alcover, Nov 06 2018 *)
PROG
(Sage) [lucas_number2(n, 4, 0)*n/2^10 for n in range(4, 26)] # Zerinvary Lajos, Mar 13 2009
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 01 2003
EXTENSIONS
More terms from Stefano Spezia, Mar 05 2023
STATUS
approved
6th binomial transform of (1,1,0,0,0,0,...).
+10
5
1, 7, 48, 324, 2160, 14256, 93312, 606528, 3919104, 25194240, 161243136, 1027924992, 6530347008, 41358864384, 261213880320, 1645647446016, 10344069660672, 64885527871488, 406239826673664, 2538998916710400, 15843353240272896, 98716277881700352, 614234617930579968
OFFSET
0,2
COMMENTS
Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 5*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003
FORMULA
a(n) = 12*a(n-1) - 36*a(n-2) with n > 1, a(0) = 1, a(1) = 7.
a(n) = (n + 6)*6^(n-1).
G.f.: (1 - 5*x)/(1 - 6*x)^2.
E.g.f.: exp(6*x)*(1 + x). - Stefano Spezia, Mar 05 2023
MATHEMATICA
CoefficientList[Series[(1 - 5 x)/(1 - 6 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{12, -36}, {1, 7}, 30] (* Harvey P. Dale, Nov 07 2013 *)
PROG
(Magma) [(n+6)*6^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 07 2003
STATUS
approved
Expansion of e.g.f. (1+x)*exp(4*x)*cosh(x).
+10
3
1, 5, 25, 127, 657, 3449, 18281, 97395, 519841, 2773741, 14776377, 78538343, 416367665, 2201517153, 11610231433, 61078202971, 320570884929, 1678897264085, 8775159682649, 45780628812879, 238431945108433
OFFSET
0,2
COMMENTS
Binomial transform of A082307.
FORMULA
a(n) = (A081105(n) + A006234(n))/2.
a(n) = ((n+3)*3^(n-1) + (n+5)*5^(n-1))/2.
G.f.: ((1-4*x)/(1-5*x)^2 + (1-2*x)/(1-3*x)^2)/2.
E.g.f.: (1+x)*exp(4*x)*cosh(x) = (1+x)*(exp(5*x) + exp(3*x))/2.
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[4*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(serlaplace((1+x)*exp(4*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(4*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
CROSSREFS
Cf. A082309.
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 09 2003
STATUS
approved
Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.
+10
2
1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704
OFFSET
0,2
COMMENTS
The main diagonal is A089945: {T(n,n)=(2*n+1)*(n+1)^(n-1), n>=0}; the hyperbinomial transform of the main diagonal is the next lower diagonal in the array (A089946): {T(n+1,n) = 2*(n+1)*(n+2)^(n-1), n>=0}.
FORMULA
T(n,k) = (k+n+1)*(n+1)^(k-1).
E.g.f.: (1+x)*exp(x)/((1-y*exp(x)).
EXAMPLE
Rows begin:
{1, 2, 3, 4, 5, 6, 7,..},
{1, 3, 8, 20, 48, 112, 256,..},
{1, 4, 15, 54, 189, 648, 2187,..},
{1, 5, 24, 112, 512, 2304, 10240,..},
{1, 6, 35, 200, 1125, 6250, 34375,..},
{1, 7, 48, 324, 2160, 14256, 93312,..},
{1, 8, 63, 490, 3773, 28812, 218491,..},..
PROG
(PARI) T(n, k)=if(n<0 || k<0, 0, (k+n+1)*(n+1)^(k-1))
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 23 2003
STATUS
approved

Search completed in 0.005 seconds