[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081105
5th binomial transform of (1,1,0,0,0,0,.....).
4
1, 6, 35, 200, 1125, 6250, 34375, 187500, 1015625, 5468750, 29296875, 156250000, 830078125, 4394531250, 23193359375, 122070312500, 640869140625, 3356933593750, 17547607421875, 91552734375000, 476837158203125
OFFSET
0,2
COMMENTS
Main diagonal of array defined by m(1,j)=j; m(i,1)=i and m(i,j)=m(i-1,j)+4*m(i-1,j-1) - Benoit Cloitre, Jun 13 2003
FORMULA
a(n) = 10*a(n-1)-25*a(n-2), a(0)=1, a(1)=6.
a(n) = (n+5)*5^(n-1).
G.f.: (1-4x)/(1-5x)^2.
a(n) = A079027(n), n>0. - R. J. Mathar, Sep 18 2008
From Amiram Eldar, Jan 19 2021: (Start)
Sum_{n>=0} 1/a(n) = 15625*log(5/4) - 41825/12.
Sum_{n>=0} (-1)^n/a(n) = 15625*log(6/5) - 34175/12. (End)
MATHEMATICA
LinearRecurrence[{10, -25}, {1, 6}, 30] (* Harvey P. Dale, Jan 20 2014 *)
PROG
(PARI) a(n)=if(n, ([0, 1; -25, 10]^n*[1; 6])[1, 1], 1) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 07 2003
STATUS
approved