Displaying 21-30 of 30 results found.
Hypotenuses for which there exist exactly 8 distinct integer triangles.
+10
24
390625, 781250, 1171875, 1562500, 2343750, 2734375, 3125000, 3515625, 4296875, 4687500, 5468750, 6250000, 7031250, 7421875, 8203125, 8593750, 8984375, 9375000, 10546875, 10937500, 12109375, 12500000, 12890625, 14062500, 14843750, 16406250, 16796875, 17187500
COMMENTS
Numbers whose square is decomposable in 8 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eight.
FORMULA
Terms are obtained by the product A004144(k)* A002144(p)^8 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 390625 = 5^8, a(5) = 2343750 = 2*3*5^8, a(101) = 75000000 = 2^6*3*5^8.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[75000000], Length[r[#]] == 8 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 9 distinct integer triangles.
+10
24
1953125, 3906250, 5859375, 7812500, 11718750, 13671875, 15625000, 17578125, 21484375, 23437500, 27343750, 31250000, 35156250, 37109375, 41015625, 42968750, 44921875, 46875000, 52734375, 54687500, 60546875, 62500000, 64453125, 70312500, 74218750, 82031250
COMMENTS
Numbers whose square is decomposable in 9 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity nine.
FORMULA
Terms are obtained by the product A004144(k)* A002144(p)^9 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 1953125 = 5^9, a(5) = 11718750 = 2*3*5^9, a(101) = 375000000 = 2^6*3*5^9.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[375000000], Length[r[#]] == 9 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 11 distinct integer triangles.
+10
24
48828125, 97656250, 146484375, 195312500, 292968750, 341796875, 390625000, 439453125, 537109375, 585937500, 683593750, 781250000, 878906250, 927734375, 1025390625, 1074218750, 1123046875, 1171875000, 1318359375, 1367187500, 1513671875, 1562500000, 1611328125
COMMENTS
Numbers whose square is decomposable in 11 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eleven.
FORMULA
Terms are obtained by the product A004144(k)* A002144(p)^11 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 48828125 = 5^11, a(5) = 292968750 = 2*3*5^11, a(101) = 9375000000 = 2^6*3*5^11.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[9375000000], Length[r[#]] == 11 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 14 distinct integer triangles.
+10
24
6103515625, 12207031250, 18310546875, 24414062500, 36621093750, 42724609375, 48828125000, 54931640625, 67138671875, 73242187500, 85449218750, 97656250000, 109863281250, 115966796875, 128173828125, 134277343750, 140380859375, 146484375000, 164794921875
COMMENTS
Numbers whose square is decomposable in 14 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fourteen.
FORMULA
Terms are obtained by the product A004144(k)* A002144(p)^14 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 6103515625 = 5^14, a(5) = 36621093750 = 2*3*5^14, a(101) = 1171875000000 = 2^6*3*5^14.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[1171875000000], Length[r[#]] == 14 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 15 distinct integer triangles.
+10
24
30517578125, 61035156250, 91552734375, 122070312500, 183105468750, 213623046875, 244140625000, 274658203125, 335693359375, 366210937500, 427246093750, 488281250000, 549316406250, 579833984375, 640869140625, 671386718750, 701904296875, 732421875000
COMMENTS
Numbers whose square is decomposable in 15 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fifteen.
FORMULA
Terms are obtained by the product A004144(k)* A002144(p)^15 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 30517578125 = 5^15, a(5) = 183105468750 = 2*3*5^15, a(101) = 5859375000000 = 2^6*3*5^15.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[5859375000000], Length[r[#]] == 15 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 18 distinct integer triangles.
+10
24
3814697265625, 7629394531250, 11444091796875, 15258789062500, 22888183593750, 26702880859375, 30517578125000, 34332275390625, 41961669921875, 45776367187500, 53405761718750, 61035156250000, 68664550781250, 72479248046875, 80108642578125, 83923339843750
COMMENTS
Numbers whose square is decomposable in 18 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eighteen.
FORMULA
Terms are obtained by the product A004144(k)* A002144(p)^18 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 3814697265625 = 5^18, a(5) = 22888183593750 = 2*3*5^18, a(101) = 732421875000000 = 2^6*3*5^18.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[732421875000000], Length[r[#]] == 18 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 19 distinct integer triangles.
+10
24
203125, 265625, 406250, 453125, 531250, 578125, 609375, 640625, 796875, 812500, 828125, 906250, 953125, 1062500, 1140625, 1156250, 1218750, 1281250, 1359375, 1390625, 1421875, 1515625, 1578125, 1593750, 1625000, 1656250, 1703125, 1734375, 1765625, 1812500
COMMENTS
Numbers whose square is decomposable in 19 different ways into the sum of two nonzero squares: these are those with exactly two distinct prime divisors of the form 4k+1 with one, and six respective multiplicities, or with only one prime divisor of this form with multiplicity nineteen.
EXAMPLE
a(1) = 203125 = 5^6*13, a(5) = 531250 = 2*5^6*17, a(281) = 12796875 = 3^2*5^6*7*13.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[12796875], Length[r[#]] == 19 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Numbers that are the sum of 2 distinct nonzero squares in exactly 2 ways.
+10
7
65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 625, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905, 949
COMMENTS
Numbers with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 3, and with no prime divisor of the form 4k+3 to an odd multiplicity. - Jean-Christophe Hervé, Dec 01 2013
EXAMPLE
65 = 5*13 = 64+1 = 49 + 16; 85 = 5*17 = 81+4 = 49+16; 125 = 5^3 = 121+4 = 100+25; 130 = 2*5*13 = 121+9 = 81+49. - Jean-Christophe Hervé, Dec 01 2013
MATHEMATICA
nn = 949; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 2]] (* T. D. Noe, Apr 07 2011 *)
Hypotenuses of more than two Pythagorean triangles.
+10
1
65, 85, 125, 130, 145, 170, 185, 195, 205, 221, 250, 255, 260, 265, 290, 305, 325, 340, 365, 370, 375, 377, 390, 410, 425, 435, 442, 445, 455, 481, 485, 493, 500, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 650, 663, 680, 685, 689
COMMENTS
Also, hypotenuses c of Pythagorean triangles with legs a and b such that a and b are also the hypotenuses of Pythagorean triangles, where the Pythagorean triples (x1,y1,a) and (x2,y2,b) are similar triangles, but the Pythagorean triples (a,b,c) and (x1,y1,a) are not similar. For example, 65^2 = 25^2 + 60^2 with 25^2 = 15^2 + 20^2 and 60^2 = 36^2 + 48^2 with the two smaller triangles being similar. - Naohiro Nomoto
EXAMPLE
65 is included because there are 4 distinct Pythagorean triangles with hypotenuse 65. In particular, 65^2 = 16^2 + 63^2 = 25^2 + 60^2 = 33^2 + 56^2 = 39^2 + 52^2.
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]>2, AppendTo[lst, n]], {n, 5*5!}]; lst
PROG
(PARI) ok(n)={my(t=0); for(k=1, sqrtint(n^2\2), t += issquare(n^2-k^2)); t>2}
Squares or double-squares that are the sum of two distinct nonzero squares in exactly one way.
+10
1
25, 50, 100, 169, 200, 225, 289, 338, 400, 450, 578, 676, 800, 841, 900, 1156, 1225, 1352, 1369, 1521, 1600, 1681, 1682, 1800, 2025, 2312, 2450, 2601, 2704, 2738, 2809, 3025, 3042, 3200, 3362, 3364, 3600, 3721, 4050, 4624, 4900, 5202, 5329, 5408, 5476
COMMENTS
Numbers with exactly one prime factor of form 4k+1 with multiplicity 2, and without prime factor of form 4k+3 to an odd multiplicity.
FORMULA
Terms are obtained by the products A125853(k)* A002144(p)^2 for k, p > 0, ordered by increasing values.
EXAMPLE
25 = 5^2 = 16+9; 50 = 2*5^2 = 49+1.
MATHEMATICA
Select[Range[10^4], (IntegerQ[Sqrt[#]] || IntegerQ[Sqrt[#/2]]) && Count[ PowersRepresentations[#, 2, 2], {x_, y_} /; Unequal[0, x, y]] == 1 &]
Search completed in 0.018 seconds
|