[go: up one dir, main page]

login
Search: a084647 -id:a084647
     Sort: relevance | references | number | modified | created      Format: long | short | data
Hypotenuses for which there exist exactly 8 distinct integer triangles.
+10
24
390625, 781250, 1171875, 1562500, 2343750, 2734375, 3125000, 3515625, 4296875, 4687500, 5468750, 6250000, 7031250, 7421875, 8203125, 8593750, 8984375, 9375000, 10546875, 10937500, 12109375, 12500000, 12890625, 14062500, 14843750, 16406250, 16796875, 17187500
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 8 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eight.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^8 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 390625 = 5^8, a(5) = 2343750 = 2*3*5^8, a(101) = 75000000 = 2^6*3*5^8.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[75000000], Length[r[#]] == 8 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Hypotenuses for which there exist exactly 9 distinct integer triangles.
+10
24
1953125, 3906250, 5859375, 7812500, 11718750, 13671875, 15625000, 17578125, 21484375, 23437500, 27343750, 31250000, 35156250, 37109375, 41015625, 42968750, 44921875, 46875000, 52734375, 54687500, 60546875, 62500000, 64453125, 70312500, 74218750, 82031250
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 9 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity nine.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^9 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 1953125 = 5^9, a(5) = 11718750 = 2*3*5^9, a(101) = 375000000 = 2^6*3*5^9.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[375000000], Length[r[#]] == 9 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Hypotenuses for which there exist exactly 11 distinct integer triangles.
+10
24
48828125, 97656250, 146484375, 195312500, 292968750, 341796875, 390625000, 439453125, 537109375, 585937500, 683593750, 781250000, 878906250, 927734375, 1025390625, 1074218750, 1123046875, 1171875000, 1318359375, 1367187500, 1513671875, 1562500000, 1611328125
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 11 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eleven.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^11 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 48828125 = 5^11, a(5) = 292968750 = 2*3*5^11, a(101) = 9375000000 = 2^6*3*5^11.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[9375000000], Length[r[#]] == 11 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Hypotenuses for which there exist exactly 14 distinct integer triangles.
+10
24
6103515625, 12207031250, 18310546875, 24414062500, 36621093750, 42724609375, 48828125000, 54931640625, 67138671875, 73242187500, 85449218750, 97656250000, 109863281250, 115966796875, 128173828125, 134277343750, 140380859375, 146484375000, 164794921875
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 14 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fourteen.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^14 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 6103515625 = 5^14, a(5) = 36621093750 = 2*3*5^14, a(101) = 1171875000000 = 2^6*3*5^14.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[1171875000000], Length[r[#]] == 14 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Hypotenuses for which there exist exactly 15 distinct integer triangles.
+10
24
30517578125, 61035156250, 91552734375, 122070312500, 183105468750, 213623046875, 244140625000, 274658203125, 335693359375, 366210937500, 427246093750, 488281250000, 549316406250, 579833984375, 640869140625, 671386718750, 701904296875, 732421875000
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 15 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity fifteen.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^15 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 30517578125 = 5^15, a(5) = 183105468750 = 2*3*5^15, a(101) = 5859375000000 = 2^6*3*5^15.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[5859375000000], Length[r[#]] == 15 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Hypotenuses for which there exist exactly 18 distinct integer triangles.
+10
24
3814697265625, 7629394531250, 11444091796875, 15258789062500, 22888183593750, 26702880859375, 30517578125000, 34332275390625, 41961669921875, 45776367187500, 53405761718750, 61035156250000, 68664550781250, 72479248046875, 80108642578125, 83923339843750
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 18 different ways into the sum of two nonzero squares: these are those with only one prime divisor of the form 4k+1 with multiplicity eighteen.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the product A004144(k)*A002144(p)^18 for k, p > 0 ordered by increasing values.
EXAMPLE
a(1) = 3814697265625 = 5^18, a(5) = 22888183593750 = 2*3*5^18, a(101) = 732421875000000 = 2^6*3*5^18.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[732421875000000], Length[r[#]] == 18 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Hypotenuses for which there exist exactly 19 distinct integer triangles.
+10
24
203125, 265625, 406250, 453125, 531250, 578125, 609375, 640625, 796875, 812500, 828125, 906250, 953125, 1062500, 1140625, 1156250, 1218750, 1281250, 1359375, 1390625, 1421875, 1515625, 1578125, 1593750, 1625000, 1656250, 1703125, 1734375, 1765625, 1812500
OFFSET
1,1
COMMENTS
Numbers whose square is decomposable in 19 different ways into the sum of two nonzero squares: these are those with exactly two distinct prime divisors of the form 4k+1 with one, and six respective multiplicities, or with only one prime divisor of this form with multiplicity nineteen.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Hamdi Sahloul)
FORMULA
Terms are obtained by the products A004144(k)*A002144(p1)*A002144(p2)^6, or A004144(k)*A002144(p1)^19 for k, p1, p2 > 0 ordered by increasing values.
EXAMPLE
a(1) = 203125 = 5^6*13, a(5) = 531250 = 2*5^6*17, a(281) = 12796875 = 3^2*5^6*7*13.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[12796875], Length[r[#]] == 19 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
KEYWORD
nonn
AUTHOR
Hamdi Sahloul, Aug 04 2017
STATUS
approved
Numbers that are the sum of 2 distinct nonzero squares in exactly 2 ways.
+10
7
65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 625, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905, 949
OFFSET
1,1
COMMENTS
Numbers with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 3, and with no prime divisor of the form 4k+3 to an odd multiplicity. - Jean-Christophe Hervé, Dec 01 2013
FORMULA
A004018(a(n)) = 16. - Jean-Christophe Hervé, Dec 01 2013
EXAMPLE
65 = 5*13 = 64+1 = 49 + 16; 85 = 5*17 = 81+4 = 49+16; 125 = 5^3 = 121+4 = 100+25; 130 = 2*5*13 = 121+9 = 81+49. - Jean-Christophe Hervé, Dec 01 2013
MATHEMATICA
nn = 949; t = Table[0, {nn}]; lim = Floor[Sqrt[nn - 1]]; Do[num = i^2 + j^2; If[num <= nn, t[[num]]++], {i, lim}, {j, i - 1}]; Flatten[Position[t, 2]] (* T. D. Noe, Apr 07 2011 *)
CROSSREFS
Cf. A001481, A004431, A004018, A230779 (one way).
Cf. analogs for square decompositions: A084645, A084646, A084647, A084648, A084649.
KEYWORD
nonn
STATUS
approved
Hypotenuses of more than two Pythagorean triangles.
+10
1
65, 85, 125, 130, 145, 170, 185, 195, 205, 221, 250, 255, 260, 265, 290, 305, 325, 340, 365, 370, 375, 377, 390, 410, 425, 435, 442, 445, 455, 481, 485, 493, 500, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 650, 663, 680, 685, 689
OFFSET
1,1
COMMENTS
Also, hypotenuses c of Pythagorean triangles with legs a and b such that a and b are also the hypotenuses of Pythagorean triangles, where the Pythagorean triples (x1,y1,a) and (x2,y2,b) are similar triangles, but the Pythagorean triples (a,b,c) and (x1,y1,a) are not similar. For example, 65^2 = 25^2 + 60^2 with 25^2 = 15^2 + 20^2 and 60^2 = 36^2 + 48^2 with the two smaller triangles being similar. - Naohiro Nomoto
LINKS
EXAMPLE
65 is included because there are 4 distinct Pythagorean triangles with hypotenuse 65. In particular, 65^2 = 16^2 + 63^2 = 25^2 + 60^2 = 33^2 + 56^2 = 39^2 + 52^2.
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]>2, AppendTo[lst, n]], {n, 5*5!}]; lst
PROG
(PARI) ok(n)={my(t=0); for(k=1, sqrtint(n^2\2), t += issquare(n^2-k^2)); t>2}
select(ok, [1..1000]) \\ Andrew Howroyd, Aug 17 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Terms a(45) and beyond from Andrew Howroyd, Aug 17 2018
STATUS
approved
Squares or double-squares that are the sum of two distinct nonzero squares in exactly one way.
+10
1
25, 50, 100, 169, 200, 225, 289, 338, 400, 450, 578, 676, 800, 841, 900, 1156, 1225, 1352, 1369, 1521, 1600, 1681, 1682, 1800, 2025, 2312, 2450, 2601, 2704, 2738, 2809, 3025, 3042, 3200, 3362, 3364, 3600, 3721, 4050, 4624, 4900, 5202, 5329, 5408, 5476
OFFSET
1,1
COMMENTS
Subsequence of A004431 and A001481.
Numbers with exactly one prime factor of form 4k+1 with multiplicity 2, and without prime factor of form 4k+3 to an odd multiplicity.
LINKS
Jean-Christophe Hervé and Donovan Johnson, Table of n, a(n) for n = 1..1000 (first 368 terms from Jean-Christophe Hervé)
FORMULA
A004018(a(n)) = 12.
Terms are obtained by the products A125853(k)*A002144(p)^2 for k, p > 0, ordered by increasing values.
EXAMPLE
25 = 5^2 = 16+9; 50 = 2*5^2 = 49+1.
MATHEMATICA
Select[Range[10^4], (IntegerQ[Sqrt[#]] || IntegerQ[Sqrt[#/2]]) && Count[ PowersRepresentations[#, 2, 2], {x_, y_} /; Unequal[0, x, y]] == 1 &]
(* or *) Select[Range[10^4], SquaresR[2, #] == 12 &] (* Jean-François Alcover, Dec 03 2013 *)
CROSSREFS
Analogs for square decompositions: A084645, A084646, A084647, A084648, A084649.
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.018 seconds