Displaying 1-10 of 23 results found.
Hypotenuses for which there exists a unique integer-sided right triangle.
+10
41
5, 10, 13, 15, 17, 20, 26, 29, 30, 34, 35, 37, 39, 40, 41, 45, 51, 52, 53, 55, 58, 60, 61, 68, 70, 73, 74, 78, 80, 82, 87, 89, 90, 91, 95, 97, 101, 102, 104, 105, 106, 109, 110, 111, 113, 115, 116, 117, 119, 120, 122, 123, 135, 136, 137, 140, 143, 146, 148, 149
COMMENTS
Numbers whose square is uniquely decomposable into the sum of two nonzero squares: these are those numbers with exactly one prime divisor of the form 4k+1 with multiplicity one. - Jean-Christophe Hervé, Nov 11 2013
MATHEMATICA
r[a_] := {b, c} /. {ToRules[ Reduce[0 < b < c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[ Range[150], Length[r[#]] == 1 &] (* Jean-François Alcover, Oct 22 2012 *)
PROG
(PARI) is_a084645(n) = #qfbsolve(Qfb(1, 0, 1), n^2, 3)==3 \\ Hugo Pfoertner, Sep 28 2024
CROSSREFS
Cf. A004144 (0), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 3 distinct integer triangles.
+10
31
125, 250, 375, 500, 750, 875, 1000, 1125, 1375, 1500, 1750, 2000, 2197, 2250, 2375, 2625, 2750, 2875, 3000, 3375, 3500, 3875, 4000, 4125, 4394, 4500, 4750, 4913, 5250, 5375, 5500, 5750, 5875, 6000, 6125, 6591, 6750, 7000, 7125, 7375, 7750
COMMENTS
Numbers whose square is decomposable in 3 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity three. - Jean-Christophe Hervé, Nov 11 2013
EXAMPLE
a(1) = 125 = 5^3, and 125^2 = 100^2 + 75^2 = 117^2 + 44^2 = 120^2 + 35^2. - Jean-Christophe Hervé, Nov 11 2013
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]==3, AppendTo[lst, n]], {n, 4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 4 distinct integer triangles.
+10
31
65, 85, 130, 145, 170, 185, 195, 205, 221, 255, 260, 265, 290, 305, 340, 365, 370, 377, 390, 410, 435, 442, 445, 455, 481, 485, 493, 505, 510, 520, 530, 533, 545, 555, 565, 580, 585, 595, 610, 615, 625, 629, 663, 680, 685, 689, 697, 715, 730, 740, 745
COMMENTS
Numbers whose square is decomposable in 4 different ways into the sum of two nonzero squares: these are those with exactly 2 distinct prime divisors of the form 4k+1, each with multiplicity one, or with only one prime divisor of this form with multiplicity 4. - Jean-Christophe Hervé, Nov 11 2013
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
EXAMPLE
a(1) = 65 = 5*13, and 65^2 = 52^2 + 39^2 = 56^2 + 33^2 = 60^2 + 25^2 = 63^2 + 16^2. - Jean-Christophe Hervé, Nov 11 2013
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]==4, AppendTo[lst, n]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 5 distinct Pythagorean triangles.
+10
31
3125, 6250, 9375, 12500, 18750, 21875, 25000, 28125, 34375, 37500, 43750, 50000, 56250, 59375, 65625, 68750, 71875, 75000, 84375, 87500, 96875, 100000, 103125, 112500, 118750, 131250, 134375, 137500, 143750, 146875, 150000, 153125
COMMENTS
Numbers whose square is decomposable in 5 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity 5. - Jean-Christophe Hervé, Nov 12 2013
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]==5, AppendTo[lst, n]], {n, 3*6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Hypotenuses for which there exist exactly 2 distinct integer triangles.
+10
30
25, 50, 75, 100, 150, 169, 175, 200, 225, 275, 289, 300, 338, 350, 400, 450, 475, 507, 525, 550, 575, 578, 600, 675, 676, 700, 775, 800, 825, 841, 867, 900, 950, 1014, 1050, 1075, 1100, 1150, 1156, 1175, 1183, 1200, 1225, 1350, 1352, 1369, 1400
COMMENTS
Numbers whose square is decomposable in 2 different ways into the sum of two nonzero squares: these are those with exactly one prime divisor of the form 4k+1 with multiplicity two. - Jean-Christophe Hervé, Nov 11 2013
MATHEMATICA
Clear[lst, f, n, i, k] f[n_]:=Module[{i=0, k=0}, Do[If[Sqrt[n^2-i^2]==IntegerPart[Sqrt[n^2-i^2]], k++ ], {i, n-1, 1, -1}]; k/2]; lst={}; Do[If[f[n]==2, AppendTo[lst, n]], {n, 4*5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 12 2009 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Numbers n that are the hypotenuse of exactly 13 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 13 ways.
+10
25
1105, 1885, 2210, 2405, 2465, 2665, 3145, 3315, 3445, 3485, 3770, 3965, 4420, 4505, 4745, 4810, 4930, 5185, 5330, 5365, 5655, 5785, 5945, 6205, 6290, 6305, 6409, 6565, 6630, 6890, 6970, 7085, 7215, 7345, 7395, 7540, 7565, 7585, 7685, 7735, 7930, 7995
COMMENTS
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c&&a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[5000], Length[r[#]] == 13 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Numbers n that are the hypotenuse of exactly 12 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 12 ways.
+10
25
4225, 7225, 8450, 12675, 14450, 16900, 21025, 21675, 25350, 28900, 29575, 33800, 34225, 38025, 42025, 42050, 43350, 46475, 48841, 50575, 50700, 57800, 59150, 63075, 65025, 67600, 68450, 70225, 76050, 79475, 80275, 84050, 84100, 86700
COMMENTS
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Numbers n that are the hypotenuse of exactly 7 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 7 ways.
+10
24
325, 425, 650, 725, 845, 850, 925, 975, 1025, 1275, 1300, 1325, 1445, 1450, 1525, 1690, 1700, 1825, 1850, 1950, 2050, 2175, 2225, 2275, 2425, 2525, 2535, 2550, 2600, 2650, 2725, 2775, 2825, 2873, 2890, 2900, 2925, 2975
COMMENTS
There are nonsquares x which can be written as a sum of 2 nonzero squares in exactly 7 different ways and which are by definition not in this sequence.
203125 = (125*sqrt(13))^2 is the first example: 203125 = 625 + 202500 = 10404 + 192721 = 18225 + 184900= 22500 + 180625= 62500 + 140625= 69169 + 133956= 84100 + 119025.
The second and third examples are 265625 = (125*sqrt(17))^2 and 406250=(125*sqrt(26))^2. (End)
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
EXAMPLE
The smallest number that can be written as a sum of two nonzero squares in 7 different ways is 105625 = 325^2:
1296 + 104329 = 105625 = 325^2
6400 + 99225 = 105625 = 325^2
8281 + 97344 = 105625 = 325^2
15625 + 90000 = 105625 = 325^2
27225 + 78400 = 105625 = 325^2
38025 + 67600 = 105625 = 325^2
41616 + 64009 = 105625 = 325^2.
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[3000], Length[r[#]] == 7 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
EXTENSIONS
Definition and comments corrected by Zak Seidov, Feb 26 2008, May 12 2008
Numbers n that are the hypotenuse of exactly 22 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 22 ways.
+10
24
5525, 9425, 11050, 12025, 12325, 13325, 14365, 15725, 16575, 17225, 17425, 18785, 18850, 19825, 22100, 22525, 23725, 24050, 24505, 24650, 25925, 26650, 26825, 28275, 28730, 28925, 29725, 31025, 31265, 31450, 31525, 32825, 33150, 34450
COMMENTS
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
MATHEMATICA
r[a_]:={b, c}/.{ToRules[Reduce[0<b<c && a^2 == b^2 + c^2, {b, c}, Integers]]}; Select[Range[10000], Length[r[#]] == 22 &] (* Vincenzo Librandi, Mar 01 2016 *)
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Numbers n that are the hypotenuse of exactly 6 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 6 ways.
+10
24
15625, 31250, 46875, 62500, 93750, 109375, 125000, 140625, 171875, 187500, 218750, 250000, 281250, 296875, 328125, 343750, 359375, 375000, 421875, 437500, 484375, 500000, 515625, 562500, 593750, 656250, 671875, 687500, 718750, 734375
COMMENTS
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019
CROSSREFS
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Search completed in 0.015 seconds
|