OFFSET
1,2
COMMENTS
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 01 2017
REFERENCES
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
LINKS
FORMULA
a(n) = n * A001615(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-2)/zeta(2*s-2).
Dirichlet convolution: Sum_{d|n} mu(n/d)*sigma(d^2). - Vladeta Jovovic, Nov 16 2001
Multiplicative with a(p^e) = p^(2*e-1)*(p+1). - David W. Wilson, Aug 01 2001
a(n) = A001615(n^2). - Enrique Pérez Herrero, Mar 06 2012
Sum_{k=1..n} a(k) ~ 5*n^3 / Pi^2. - Vaclav Kotesovec, Jan 11 2019
Sum_{n>=1} 1/a(n) = A335762. - Amiram Eldar, Jun 23 2020
MAPLE
proc(n) local b, d: b := n^2: for d from 1 to n do if irem(n, d) = 0 and isprime(d) then b := b*(1+d^(-1)): fi: od: RETURN(b): end:
MATHEMATICA
Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1+1/#2), #1 ]&, n^2, Range[ n ] ], {n, 1, 45} ]
Table[ n^2 Times@@(1+1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]), {n, 1, 45} ] (* Olivier Gérard, Aug 15 1997 *)
f[p_, e_] := (p+1)*p^(2*e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 23 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, (1+p*X)/(1-p^2*X))[n])
(Haskell)
a000082 n = product $ zipWith (\p e -> p ^ (2*e - 1) * (p + 1))
(a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Oct 03 2012
KEYWORD
nonn,easy,nice,mult
AUTHOR
EXTENSIONS
Additional comments from Michael Somos, May 19 2000
STATUS
approved