[go: up one dir, main page]

login
Search: a076566 -id:a076566
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n^2*Product_{p|n} (1 + 1/p).
+10
12
1, 6, 12, 24, 30, 72, 56, 96, 108, 180, 132, 288, 182, 336, 360, 384, 306, 648, 380, 720, 672, 792, 552, 1152, 750, 1092, 972, 1344, 870, 2160, 992, 1536, 1584, 1836, 1680, 2592, 1406, 2280, 2184, 2880, 1722, 4032, 1892, 3168, 3240, 3312, 2256
OFFSET
1,2
COMMENTS
For n > 1: A006530(a(n)) = A076566(n-1). - Reinhard Zumkeller, Oct 03 2012
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 01 2017
REFERENCES
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 79.
FORMULA
a(n) = n * A001615(n).
Dirichlet g.f.: zeta(s-1)*zeta(s-2)/zeta(2*s-2).
Dirichlet convolution: Sum_{d|n} mu(n/d)*sigma(d^2). - Vladeta Jovovic, Nov 16 2001
Multiplicative with a(p^e) = p^(2*e-1)*(p+1). - David W. Wilson, Aug 01 2001
a(n) = A181797(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A001615(n^2). - Enrique Pérez Herrero, Mar 06 2012
Sum_{k=1..n} a(k) ~ 5*n^3 / Pi^2. - Vaclav Kotesovec, Jan 11 2019
Sum_{n>=1} 1/a(n) = A335762. - Amiram Eldar, Jun 23 2020
MAPLE
proc(n) local b, d: b := n^2: for d from 1 to n do if irem(n, d) = 0 and isprime(d) then b := b*(1+d^(-1)): fi: od: RETURN(b): end:
MATHEMATICA
Table[ Fold[ If[ Mod[ n, #2 ]==0 && PrimeQ[ #2 ], #1*(1+1/#2), #1 ]&, n^2, Range[ n ] ], {n, 1, 45} ]
Table[ n^2 Times@@(1+1/Select[ Range[ 1, n ], (Mod[ n, #1 ]==0&&PrimeQ[ #1 ])& ]), {n, 1, 45} ] (* Olivier Gérard, Aug 15 1997 *)
f[p_, e_] := (p+1)*p^(2*e - 1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Jun 23 2020 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, (1+p*X)/(1-p^2*X))[n])
(Haskell)
a000082 n = product $ zipWith (\p e -> p ^ (2*e - 1) * (p + 1))
(a027748_row n) (a124010_row n)
-- Reinhard Zumkeller, Oct 03 2012
CROSSREFS
KEYWORD
nonn,easy,nice,mult
EXTENSIONS
Additional comments from Michael Somos, May 19 2000
STATUS
approved
Greatest prime factor of n^3+2.
+10
1
3, 5, 29, 11, 127, 109, 23, 257, 43, 167, 43, 173, 733, 1373, 307, 683, 983, 2917, 2287, 4001, 157, 71, 283, 223, 5209, 47, 127, 3659, 24391, 587, 9931, 113, 433, 6551, 809, 569, 307, 27437, 433, 10667, 439, 239, 1559, 223, 91127, 16223, 4153, 457, 39217, 62501
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
D. R. Heath-Brown, The largest prime factor of x^3+2, Proceedings of the London Mathematical Society, 82:3 (2000), pp. 554-596.
Christopher Hooley, On the greatest prime factor of a cubic polynomial, Journal für die reine und angewandte Mathematik, 303 (1978), pp. 21-50.
A. J. Irving, The largest prime factor of x^3+2, arXiv:1412.0024 [math.NT], 2014.
MATHEMATICA
Table[FactorInteger[n^3 + 2] [[-1, 1]], {n, 80}] (* Vincenzo Librandi, Oct 27 2018 *)
PROG
(Magma) [Maximum(PrimeDivisors(n^3 + 2)): n in [1..60]]; // Vincenzo Librandi, Oct 27 2018 *)
(PARI) a(n) = vecmax(factor(n^3+2)[, 1]); \\ Michel Marcus, Oct 27 2018
CROSSREFS
Greatest prime factors of polynomials: A006530 (n), A076565 (2n+1), A076566 (3n+3), A076567 (4n+6), A164314 (n^2-2), A076605 (n^2-1), A014442 (n^2+1), A069902 (n^2+n), A074399 (n^2+n), A199423 (2n^2+n), A089619 (2n^2+2n+1), A037464 (4n^2-1), A253254 (9n^2-7n), A093074 (n^3-n), A081257 (n^3-1), A081256 (n^3+1), A321069(n^3+2), A281793 (n^3+n^2+n+1), A281793 (n^4-1), A096172 (n^4+1), A190136 (n^4 + 6n^3 + 11n^2 + 6n), A140538 (2n^4+1), A240548 (n^5+1), A281794 (n^5+n^3+n^2+1), A240549 (n^6+1), A240550 (n^7+1), A240551 (n^8+1), A240552 (n^9+1), A240553 (n^10+1).
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.007 seconds