[go: up one dir, main page]

login
Search: a062989 -id:a062989
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sextinomial (also called hexanomial) coefficient array.
+10
22
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780
OFFSET
0,9
COMMENTS
The sequence of step width of this staircase array is [1,5,5,...], hence the degree sequence for the row polynomials is [0,5,10,15,...]=A008587.
The column sequences (without leading zeros) are for k=0..5 those of the lower triangular array A007318 (Pascal) and for k=6..9: A062989, A063262-4. Row sums give A000400 (powers of 6). Central coefficients give A063419; see also A018901.
This can be used to calculate the number of occurrences of a given roll of n six-sided dice, where k is the index: k=0 being the lowest possible roll (i.e., n) and n*6 being the highest roll.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.
LINKS
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
FORMULA
G.f. for row n: (Sum_{j=0..5} x^j)^n.
G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.
T(n, k) = 0 if n=-1 or k<0 or k >= 5*n + 1; T(0, 0)=1; T(n, k) = Sum_{j=0..5} T(n-1, k-j) else.
T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013
T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015
EXAMPLE
The irregular table T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1: 1
2: 1 1 1 1 1 1
3: 1 2 3 4 5 6 5 4 3 2 1
4: 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
...reformatted - Wolfdieter Lang, Oct 31 2015
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 6-nomials as a table
r := 6: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
MATHEMATICA
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
PROG
(PARI) concat(vector(5, k, Vec(sum(j=0, 5, x^j)^k))) \\ M. F. Hasler, Jun 17 2012
CROSSREFS
The q-nomial arrays for q=2..5 are: A007318 (Pascal), A027907, A008287, A035343 and for q=7: A063265, A171890, A213652, A213651.
Columns for k=0..9 (with some shifts) are: A000012, A000027, A000217, A000292, A000332, A000389, A062989, A063262, A063263, A063264.
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 24 2001
EXTENSIONS
More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002
STATUS
approved
Eighth column (k=7) of sextinomial array A063260.
+10
6
4, 27, 104, 305, 756, 1667, 3368, 6354, 11340, 19327, 31680, 50219, 77324, 116055, 170288, 244868, 345780, 480339, 657400, 887589, 1183556, 1560251, 2035224, 2628950, 3365180, 4271319, 5378832
OFFSET
0,1
LINKS
FORMULA
a(n) = A063260(n+2, 7 )= (n+1)*(n+2)*(n^5+32*n^4+413*n^3+2722*n^2+9432*n+10080)/7!.
G.f.: (4-5*x+5*x^3-4*x^4+x^5)/(1-x)^8; the numerator polynomial is N6(7, x) from row n=7 of array A063261.
a(n) = 4*C(n+2,2) + 15*C(n+2,3) + 20*C(n+2,4) + 15*C(n+2,5) + 6*C(n+2,6) + C(n+2,7) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
MATHEMATICA
CoefficientList[Series[(4-5x+5x^3-4x^4+x^5)/(1-x)^8, {x, 0, 30}], x] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {4, 27, 104, 305, 756, 1667, 3368, 6354}, 30] (* Harvey P. Dale, Mar 07 2023 *)
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved
Ninth column (k=8) of sextinomial array A063260.
+10
6
3, 27, 125, 420, 1161, 2807, 6147, 12465, 23760, 43032, 74646, 124787, 202020, 317970, 488138, 732870, 1078497, 1558665, 2215875, 3103254, 4286579, 5846577, 7881525, 10510175, 13875030, 18145998, 23524452
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
a(n) = A063260(n+2, 8) = (n+1)*(n+2)*(n+3)*(n^5+38*n^4+587*n^3+4678*n^2+19896*n+20160)/8!.
G.f.: (3-10*x^2+15*x^3-9*x^4+2*x^5)/(1-x)^9; the numerator polynomial is N6(8, x) from row n=8 of array A063261.
a(n) = 3*C(n+2,2) + 18*C(n+2,3) + 35*C(n+2,4) + 35*C(n+2,5) + 21*C(n+2,6) + 7*C(n+2,7) + C(n+2,8) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved
Tenth column (k=9) of sextinomial array A063260.
+10
6
2, 25, 140, 540, 1666, 4417, 10480, 22825, 46420, 89232, 163592, 288015, 489580, 806990, 1294448, 2026502, 3104030, 4661555, 6876100, 9977814, 14262622, 20107175, 27986400, 38493975, 52366080, 70508802
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
FORMULA
a(n) = A063260(n+2, 9) = (n+1)*(n+2)*(n+3)*(n+4)*(n^5+44*n^4+791*n^3+7384*n^2+37140*n+30240)/9!.
G.f.: (2+5*x-20*x^2+25*x^3-14*x^4+3*x^5)/(1-x)^10; the numerator polynomial is N6(8, x) from row n=8 of array A063261.
a(n) = 2*C(n+2,2) + 19*C(n+2,3) + 52*C(n+2,4) + 70*C(n+2,5) + 56*C(n+2,6) + 28*C(n+2,7) + 8*C(n+2,8) + C(n+2,9) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved
Triangle of numbers C^(5)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 5 appearances allowed.
+10
4
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 456, 1, 7, 28, 84, 210, 462, 917, 1667, 1, 8, 36, 120, 330, 792, 1708, 3368, 6147, 1, 9, 45, 165, 495, 1287, 2994, 6354, 12465, 22825, 1, 10
OFFSET
0,5
COMMENTS
For k<=4, the triangle coincides with triangle A213743.
We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A062989(n) for n>=5, T(n,7)=A063262 for n>=5, T(n,8)=A063263 for n>=6, T(n,9)=A063264 for n>=7.
LINKS
FORMULA
C^(5)(n,k)=sum{r=0,...,floor(k/6)}(-1)^r*C(n,r)*C(n-6*r+k-1, n-1)
EXAMPLE
Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....35
.5..|..1.....5....15....35....70....126
.6..|..1.....6....21....56...126....252...456
.7..|..1.....7....28....84...210....462...917....1667
MATHEMATICA
Flatten[Table[Sum[(-1)^r Binomial[n, r] Binomial[n-# r+k-1, n-1], {r, 0, Floor[k/#]}], {n, 0, 15}, {k, 0, n}]/.{0}->{1}]&[6] (* Peter J. C. Moses, Apr 16 2013 *)
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved
Eighth column (r=7) of FS(5) staircase array A062985.
+10
2
5, 30, 110, 315, 771, 1688, 3396, 6390, 11385, 19382, 31746, 50297, 77415, 116160, 170408, 245004, 345933, 480510, 657590, 887799, 1183787, 1560504, 2035500, 2629250, 3365505, 4271670, 5379210, 6724085, 8347215
OFFSET
0,1
COMMENTS
In the Frey-Sellers reference this sequence is called {(n+2) over 7}_{4}, n >= 0.
LINKS
D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
FORMULA
a(n) = A062985(n+2, 7) = (n+1)*(n+2)*(n+3)*(n^4 + 29*n^3 + 326*n^2 + 1744*n + 4200)/7!.
G.f.: N(5;1, x)/(1-x)^8 with N(5;1, x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x polynomial of second row of A062986.
a(n) = binomial(n+7,n) - binomial(n+2,n). - Zerinvary Lajos, Jun 23 2006
MAPLE
[seq((binomial(n+7, n)-binomial(n+2, n)), n=1..29)]; # Zerinvary Lajos, Jun 23 2006
MATHEMATICA
Table[Binomial[n+7, n]-Binomial[n+2, n], {n, 30}] (* or *) LinearRecurrence[ {8, -28, 56, -70, 56, -28, 8, -1}, {5, 30, 110, 315, 771, 1688, 3396, 6390}, 30] (* Harvey P. Dale, Jun 09 2016 *)
PROG
(PARI) { for (n=0, 1000, m=n + 1; a=binomial(m + 7, m) - binomial(m + 2, m); write("b062990.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 15 2009
CROSSREFS
Partial sums of A062989.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 12 2001
EXTENSIONS
More terms from Zerinvary Lajos, Jun 23 2006
STATUS
approved

Search completed in 0.005 seconds