[go: up one dir, main page]

login
Search: a063262 -id:a063262
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sextinomial (also called hexanomial) coefficient array.
+10
22
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780
OFFSET
0,9
COMMENTS
The sequence of step width of this staircase array is [1,5,5,...], hence the degree sequence for the row polynomials is [0,5,10,15,...]=A008587.
The column sequences (without leading zeros) are for k=0..5 those of the lower triangular array A007318 (Pascal) and for k=6..9: A062989, A063262-4. Row sums give A000400 (powers of 6). Central coefficients give A063419; see also A018901.
This can be used to calculate the number of occurrences of a given roll of n six-sided dice, where k is the index: k=0 being the lowest possible roll (i.e., n) and n*6 being the highest roll.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.
LINKS
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
FORMULA
G.f. for row n: (Sum_{j=0..5} x^j)^n.
G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.
T(n, k) = 0 if n=-1 or k<0 or k >= 5*n + 1; T(0, 0)=1; T(n, k) = Sum_{j=0..5} T(n-1, k-j) else.
T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013
T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015
EXAMPLE
The irregular table T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1: 1
2: 1 1 1 1 1 1
3: 1 2 3 4 5 6 5 4 3 2 1
4: 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
...reformatted - Wolfdieter Lang, Oct 31 2015
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 6-nomials as a table
r := 6: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
MATHEMATICA
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
PROG
(PARI) concat(vector(5, k, Vec(sum(j=0, 5, x^j)^k))) \\ M. F. Hasler, Jun 17 2012
CROSSREFS
The q-nomial arrays for q=2..5 are: A007318 (Pascal), A027907, A008287, A035343 and for q=7: A063265, A171890, A213652, A213651.
Columns for k=0..9 (with some shifts) are: A000012, A000027, A000217, A000292, A000332, A000389, A062989, A063262, A063263, A063264.
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 24 2001
EXTENSIONS
More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002
STATUS
approved
Ninth column (k=8) of sextinomial array A063260.
+10
6
3, 27, 125, 420, 1161, 2807, 6147, 12465, 23760, 43032, 74646, 124787, 202020, 317970, 488138, 732870, 1078497, 1558665, 2215875, 3103254, 4286579, 5846577, 7881525, 10510175, 13875030, 18145998, 23524452
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (9, -36, 84, -126, 126, -84, 36, -9, 1).
FORMULA
a(n) = A063260(n+2, 8) = (n+1)*(n+2)*(n+3)*(n^5+38*n^4+587*n^3+4678*n^2+19896*n+20160)/8!.
G.f.: (3-10*x^2+15*x^3-9*x^4+2*x^5)/(1-x)^9; the numerator polynomial is N6(8, x) from row n=8 of array A063261.
a(n) = 3*C(n+2,2) + 18*C(n+2,3) + 35*C(n+2,4) + 35*C(n+2,5) + 21*C(n+2,6) + 7*C(n+2,7) + C(n+2,8) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved
Tenth column (k=9) of sextinomial array A063260.
+10
6
2, 25, 140, 540, 1666, 4417, 10480, 22825, 46420, 89232, 163592, 288015, 489580, 806990, 1294448, 2026502, 3104030, 4661555, 6876100, 9977814, 14262622, 20107175, 27986400, 38493975, 52366080, 70508802
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
FORMULA
a(n) = A063260(n+2, 9) = (n+1)*(n+2)*(n+3)*(n+4)*(n^5+44*n^4+791*n^3+7384*n^2+37140*n+30240)/9!.
G.f.: (2+5*x-20*x^2+25*x^3-14*x^4+3*x^5)/(1-x)^10; the numerator polynomial is N6(8, x) from row n=8 of array A063261.
a(n) = 2*C(n+2,2) + 19*C(n+2,3) + 52*C(n+2,4) + 70*C(n+2,5) + 56*C(n+2,6) + 28*C(n+2,7) + 8*C(n+2,8) + C(n+2,9) (see comment in A213888). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved
Triangle of numbers C^(5)(n,k) of combinations with repetitions from n different elements over k for each of them not more than 5 appearances allowed.
+10
4
1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 126, 1, 6, 21, 56, 126, 252, 456, 1, 7, 28, 84, 210, 462, 917, 1667, 1, 8, 36, 120, 330, 792, 1708, 3368, 6147, 1, 9, 45, 165, 495, 1287, 2994, 6354, 12465, 22825, 1, 10
OFFSET
0,5
COMMENTS
For k<=4, the triangle coincides with triangle A213743.
We have over columns of the triangle: T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A000389(n) for n>=9, T(n,6)=A062989(n) for n>=5, T(n,7)=A063262 for n>=5, T(n,8)=A063263 for n>=6, T(n,9)=A063264 for n>=7.
LINKS
FORMULA
C^(5)(n,k)=sum{r=0,...,floor(k/6)}(-1)^r*C(n,r)*C(n-6*r+k-1, n-1)
EXAMPLE
Triangle begins
n/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....1
.2..|..1.....2.....3
.3..|..1.....3.....6....10
.4..|..1.....4....10....20....35
.5..|..1.....5....15....35....70....126
.6..|..1.....6....21....56...126....252...456
.7..|..1.....7....28....84...210....462...917....1667
MATHEMATICA
Flatten[Table[Sum[(-1)^r Binomial[n, r] Binomial[n-# r+k-1, n-1], {r, 0, Floor[k/#]}], {n, 0, 15}, {k, 0, n}]/.{0}->{1}]&[6] (* Peter J. C. Moses, Apr 16 2013 *)
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved
Triangle of coefficients of representations of columns of A213744 in binomial basis.
+10
4
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 0, 5, 10, 10, 5, 1, 0, 0, 4, 15, 20, 15, 6, 1, 0, 0, 3, 18, 35, 35, 21, 7, 1, 0, 0, 2, 19, 52, 70, 56, 28, 8, 1, 0, 0, 1, 18, 68, 121, 126, 84, 36, 9, 1, 0
OFFSET
0,9
COMMENTS
This triangle is the fourth array in the sequence of arrays A026729, A071675, A213887,..., such that the first two arrays are considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213744. For example, s_1(n)=binomial(n,1)=n is the first column of A213744 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213744 for n>1, etc. In particular (see comment inA213744), in cases k=7,8,9 s_k(n) is A063262(n+2), A063263(n+2), A063264(n+2) respectively.
EXAMPLE
As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....1....4....6....4....1
.6..|..0....0....5...10...10....5....1
.7..|..0....0....4...15...20...15....6....1
.8..|..0....0....3...18...35...35...21....7....1
.9..|..0....0....2...19...52...70...56...28....8....1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Search completed in 0.008 seconds