Displaying 1-10 of 12 results found.
Sum of digits of 2^n.
(Formerly M1085 N0414)
+10
43
1, 2, 4, 8, 7, 5, 10, 11, 13, 8, 7, 14, 19, 20, 22, 26, 25, 14, 19, 29, 31, 26, 25, 41, 37, 29, 40, 35, 43, 41, 37, 47, 58, 62, 61, 59, 64, 56, 67, 71, 61, 50, 46, 56, 58, 62, 70, 68, 73, 65, 76, 80, 79, 77, 82, 92, 85, 80, 70, 77
COMMENTS
Same digital roots as A065075 (sum of digits of the sum of the preceding numbers) and A004207 (sum of digits of all previous terms); they enter into the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005
It is believed that a(n) ~ n*9*log_10(2)/2, but this is an open problem. - N. J. A. Sloane, Apr 21 2013
The Radcliffe preprint shows that a(n) > log_4(n). - M. F. Hasler, May 18 2017
REFERENCES
Archimedeans Problems Drive, Eureka, 26 (1963), 12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
seq(convert(convert(2^n, base, 10), `+`), n=0..1000); # Robert Israel, Mar 29 2015
PROG
(Python) [sum(map(int, str(2**n))) for n in range(56)] # David Radcliffe, Mar 29 2015
(Haskell)
1, 3, 9, 9, 9, 9, 18, 18, 18, 27, 27, 27, 18, 27, 45, 36, 27, 27, 45, 36, 45, 27, 45, 54, 54, 63, 63, 81, 72, 72, 63, 81, 63, 72, 99, 81, 81, 90, 90, 81, 90, 99, 90, 108, 90, 99, 108, 126, 117, 108, 144, 117, 117, 135, 108, 90, 90, 108, 126, 117, 99
COMMENTS
All terms a(n), n > 1, are divisible by 9. - M. F. Hasler, Sep 27 2017
MATHEMATICA
Total[IntegerDigits[#]]&/@(3^Range[0, 60]) (* Harvey P. Dale, Mar 03 2013 *)
PROG
(Python)
def a(n): return sum(map(int, str(3**n)))
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), this sequence (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
1, 5, 7, 8, 13, 11, 19, 23, 25, 26, 40, 38, 28, 23, 34, 44, 58, 56, 64, 59, 61, 62, 67, 74, 82, 77, 79, 89, 85, 83, 91, 104, 106, 89, 103, 92, 109, 104, 124, 134, 130, 137, 145, 149, 151, 116, 112, 128, 145, 158, 151, 152, 130, 119, 127, 167, 196
COMMENTS
We can expect and conjecture that a(n) ~ 4.5*log_10(5)*n, but for n ~ 10^3..10^4 there are still fluctuations of +- 1%, e.g., a(10^3)/log_10(5) ~ 4538, a(10^4)/log_10(5) ~ 44518. Modulo 9, the sequence is periodic with period (1, 5, 7, 8, 4, 2) of length 6. No term is divisible by 3, a(n) = (-1)^n (mod 3). - M. F. Hasler, May 18 2017
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { for (n=0, 1000, a=SumD(5^n); write("b066001.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), this sequence (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
1, 6, 9, 9, 18, 27, 27, 36, 36, 36, 36, 45, 45, 36, 54, 63, 54, 72, 72, 63, 72, 81, 63, 72, 90, 90, 99, 99, 90, 135, 117, 99, 126, 126, 135, 135, 126, 135, 135, 162, 171, 126, 153, 153, 153, 162, 180, 162, 153, 162, 171, 216, 171, 216, 171, 162
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { for (n=0, 1000, a=SumD(6^n); write("b066002.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), this sequence (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
1, 7, 13, 10, 7, 22, 28, 25, 31, 28, 43, 49, 37, 52, 58, 64, 52, 58, 73, 79, 76, 82, 97, 85, 73, 97, 112, 91, 133, 121, 118, 115, 103, 127, 142, 157, 136, 115, 130, 136, 142, 148, 136, 169, 175, 163, 187, 175, 136, 178, 184, 217, 196, 220, 217
MATHEMATICA
Table[Total[IntegerDigits[7^n]], {n, 55}] (* Harvey P. Dale, Nov 22 2010 *)
PROG
(Magma) [ &+Intseq(7^n): n in [0..60] ];
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), this sequence (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
1, 4, 16, 19, 22, 25, 37, 40, 34, 46, 67, 52, 55, 58, 97, 73, 85, 88, 91, 85, 115, 91, 121, 106, 109, 121, 133, 118, 121, 133, 163, 184, 169, 181, 193, 169, 172, 175, 178, 199, 193, 214, 226, 238, 169, 190, 247, 241, 208, 247, 232, 253, 292, 241, 316, 292, 268, 271, 301, 286, 298, 337, 304, 325
COMMENTS
It is surprising that many values repeat twice (for 85, 91, 121, 133, 169 this happens at a(n) = a(n+3) (but 169 occurs later for a third time), for 193, 241, 292, ... the second occurrence comes later) while many other values never occur. Is there a simple explanation? - M. F. Hasler, May 18 2017
FORMULA
a(n) ~ 4.5*log_10(13)*n ~ 5.0127*n (conjectured). - M. F. Hasler, May 18 2017
MATHEMATICA
Table[Total[IntegerDigits[13^k]], {k, 0, 1000}]
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), this sequence (k=13).
1, 9, 9, 18, 18, 27, 18, 45, 27, 45, 45, 45, 54, 63, 72, 63, 63, 99, 81, 90, 90, 90, 90, 108, 117, 144, 117, 108, 90, 126, 99, 153, 144, 117, 153, 144, 162, 171, 153, 153, 153, 198, 162, 171, 198, 216, 171, 198, 198, 225, 153, 252, 216, 234, 207
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) }
{ for (n=0, 1000, a=SumD(9^n); write("b065999.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), this sequence (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
1, 8, 10, 8, 19, 26, 19, 26, 37, 35, 37, 62, 64, 71, 46, 62, 73, 80, 82, 80, 82, 89, 109, 89, 109, 125, 100, 107, 118, 107, 118, 125, 127, 107, 118, 125, 145, 143, 145, 152, 172, 170, 172, 188, 181, 170, 190, 215, 172, 215, 235, 233, 217, 215
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { for (n=0, 1000, a=SumD(8^n); write("b066004.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), this sequence (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
1, 2, 4, 8, 16, 14, 28, 38, 40, 53, 43, 41, 55, 47, 76, 71, 88, 86, 82, 83, 94, 71, 97, 95, 118, 101, 112, 125, 124, 140, 145, 137, 139, 143, 178, 140, 172, 200, 184, 188, 205, 203, 190, 164, 175, 215, 196, 248, 190, 218, 265, 251, 223, 230
MATHEMATICA
Total/@(IntegerDigits/@(11^Range[0, 60])) (* Harvey P. Dale, Nov 02 2011 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { f=1; for (n=0, 1000, a=SumD(f); f*=11; write("b066005.txt", n, " ", a) ) } [ Harry J. Smith, Nov 06 2009]
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), this sequence (k=11), A066006 (k=12), A175527 (k=13).
1, 4, 7, 10, 13, 7, 19, 22, 25, 19, 31, 25, 37, 40, 43, 37, 58, 61, 64, 67, 61, 46, 58, 70, 73, 76, 79, 82, 85, 70, 82, 85, 88, 109, 103, 70, 109, 130, 106, 100, 112, 124, 118, 112, 115, 118, 139, 151, 127, 112, 115, 118, 121, 142, 145, 121, 160
FORMULA
a(n) = A001370(2n). Results given there imply a(n) > log_4(n) + 1/2, n > 0, but we can conjecture & expect a(n) ~ 9*log_10(2)*n. - M. F. Hasler, May 18 2017
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } { for (n=0, 1000, a=SumD(4^n); write("b065713.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 27 2009
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), this sequence (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
Search completed in 0.011 seconds
|