[go: up one dir, main page]

login
Search: a066006 -id:a066006
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of digits of 2^n.
(Formerly M1085 N0414)
+10
43
1, 2, 4, 8, 7, 5, 10, 11, 13, 8, 7, 14, 19, 20, 22, 26, 25, 14, 19, 29, 31, 26, 25, 41, 37, 29, 40, 35, 43, 41, 37, 47, 58, 62, 61, 59, 64, 56, 67, 71, 61, 50, 46, 56, 58, 62, 70, 68, 73, 65, 76, 80, 79, 77, 82, 92, 85, 80, 70, 77
OFFSET
0,2
COMMENTS
Same digital roots as A065075 (sum of digits of the sum of the preceding numbers) and A004207 (sum of digits of all previous terms); they enter into the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005
It is believed that a(n) ~ n*9*log_10(2)/2, but this is an open problem. - N. J. A. Sloane, Apr 21 2013
The Radcliffe preprint shows that a(n) > log_4(n). - M. F. Hasler, May 18 2017
Sierpiński shows that if n >= A137284(k-1) then a(n) >= k (Problem 209). - David Radcliffe, Dec 26 2022
REFERENCES
Archimedeans Problems Drive, Eureka, 26 (1963), 12.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Radcliffe, The growth of digital sums of powers of two. Preprint, 2015.
David G. Radcliffe, The growth of digital sums of powers of two, arXiv:1605.02839 [math.NT], 2016.
C. L. Stewart, On the representation of an integer in two different bases, Journal für die reine und angewandte Mathematik 319 (1980): 63-72.
FORMULA
a(n) = A007953(A000079(n)). - Michel Marcus, Nov 01 2013
MAPLE
seq(convert(convert(2^n, base, 10), `+`), n=0..1000); # Robert Israel, Mar 29 2015
MATHEMATICA
Table[Total[IntegerDigits[2^n]], {n, 0, 55}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) a(n)=sumdigits(2^n); \\ Michel Marcus, Nov 01 2013
(Python) [sum(map(int, str(2**n))) for n in range(56)] # David Radcliffe, Mar 29 2015
(Haskell)
a001370 = a007953 . a000079 -- Reinhard Zumkeller, Aug 14 2015
CROSSREFS
Cf. sum of digits of k^n: A004166 (k=3), A065713 (k=4), A066001(k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12).
KEYWORD
base,easy,nonn
STATUS
approved
Sum of digits of 3^n.
+10
25
1, 3, 9, 9, 9, 9, 18, 18, 18, 27, 27, 27, 18, 27, 45, 36, 27, 27, 45, 36, 45, 27, 45, 54, 54, 63, 63, 81, 72, 72, 63, 81, 63, 72, 99, 81, 81, 90, 90, 81, 90, 99, 90, 108, 90, 99, 108, 126, 117, 108, 144, 117, 117, 135, 108, 90, 90, 108, 126, 117, 99
OFFSET
0,2
COMMENTS
All terms a(n), n > 1, are divisible by 9. - M. F. Hasler, Sep 27 2017
LINKS
Michel Marcus, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Vincenzo Librandi)
Albert Frank, Solutions of International Contest Of Logical Sequences, 2002 - 2003. (The original Contest page without solutions was removed but remains available on web.archive.org.)
FORMULA
a(n) = A007953(A000244(n)). - Michel Marcus, Nov 01 2013
MATHEMATICA
Total[IntegerDigits[#]]&/@(3^Range[0, 60]) (* Harvey P. Dale, Mar 03 2013 *)
Table[Total[IntegerDigits[3^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) a(n)=sumdigits(3^n); \\ Michel Marcus, Nov 01 2013
(Python)
def a(n): return sum(map(int, str(3**n)))
print([a(n) for n in range(61)]) # Michael S. Branicky, Apr 25 2022
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), this sequence (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
KEYWORD
nonn,base
EXTENSIONS
Edited by M. F. Hasler, May 18 2017
STATUS
approved
Sum of digits of 5^n.
+10
23
1, 5, 7, 8, 13, 11, 19, 23, 25, 26, 40, 38, 28, 23, 34, 44, 58, 56, 64, 59, 61, 62, 67, 74, 82, 77, 79, 89, 85, 83, 91, 104, 106, 89, 103, 92, 109, 104, 124, 134, 130, 137, 145, 149, 151, 116, 112, 128, 145, 158, 151, 152, 130, 119, 127, 167, 196
OFFSET
0,2
COMMENTS
We can expect and conjecture that a(n) ~ 4.5*log_10(5)*n, but for n ~ 10^3..10^4 there are still fluctuations of +- 1%, e.g., a(10^3)/log_10(5) ~ 4538, a(10^4)/log_10(5) ~ 44518. Modulo 9, the sequence is periodic with period (1, 5, 7, 8, 4, 2) of length 6. No term is divisible by 3, a(n) = (-1)^n (mod 3). - M. F. Hasler, May 18 2017
LINKS
MATHEMATICA
Table[ Total@ IntegerDigits[5^n], {n, 0, 60}] (* Robert G. Wilson v Oct 25 2006 *).
Table[Total[IntegerDigits[5^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { for (n=0, 1000, a=SumD(5^n); write("b066001.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
(PARI) A066001=a(n)=sumdigits(5^n); \\ Michel Marcus, Sep 04 2014
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), this sequence (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved
Sum of digits of 6^n.
+10
20
1, 6, 9, 9, 18, 27, 27, 36, 36, 36, 36, 45, 45, 36, 54, 63, 54, 72, 72, 63, 72, 81, 63, 72, 90, 90, 99, 99, 90, 135, 117, 99, 126, 126, 135, 135, 126, 135, 135, 162, 171, 126, 153, 153, 153, 162, 180, 162, 153, 162, 171, 216, 171, 216, 171, 162
OFFSET
0,2
LINKS
FORMULA
a(n) = A007953(A000400(n)). - Michel Marcus, Nov 01 2013 [corrected by Georg Fischer, Dec 28 2020]
MATHEMATICA
Table[Total[IntegerDigits[6^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { for (n=0, 1000, a=SumD(6^n); write("b066002.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
(PARI) a(n) = sumdigits(6^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), this sequence (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
Cf. A007953.
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved
Sum of digits of 7^n.
+10
20
1, 7, 13, 10, 7, 22, 28, 25, 31, 28, 43, 49, 37, 52, 58, 64, 52, 58, 73, 79, 76, 82, 97, 85, 73, 97, 112, 91, 133, 121, 118, 115, 103, 127, 142, 157, 136, 115, 130, 136, 142, 148, 136, 169, 175, 163, 187, 175, 136, 178, 184, 217, 196, 220, 217
OFFSET
0,2
LINKS
FORMULA
a(n) = A007953(A000420(n)). - Michel Marcus, Nov 01 2013
MATHEMATICA
Table[Total[IntegerDigits[7^n]], {n, 55}] (* Harvey P. Dale, Nov 22 2010 *)
PROG
(Magma) [ &+Intseq(7^n): n in [0..60] ];
(PARI) a(n) = sumdigits(7^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. A000420 (7^n), A007953 (sum of digits).
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), this sequence (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved
Digit sum of 13^n.
+10
17
1, 4, 16, 19, 22, 25, 37, 40, 34, 46, 67, 52, 55, 58, 97, 73, 85, 88, 91, 85, 115, 91, 121, 106, 109, 121, 133, 118, 121, 133, 163, 184, 169, 181, 193, 169, 172, 175, 178, 199, 193, 214, 226, 238, 169, 190, 247, 241, 208, 247, 232, 253, 292, 241, 316, 292, 268, 271, 301, 286, 298, 337, 304, 325
OFFSET
0,2
COMMENTS
It is surprising that many values repeat twice (for 85, 91, 121, 133, 169 this happens at a(n) = a(n+3) (but 169 occurs later for a third time), for 193, 241, 292, ... the second occurrence comes later) while many other values never occur. Is there a simple explanation? - M. F. Hasler, May 18 2017
LINKS
FORMULA
a(n) = A007953(A001022(n)). - Michel Marcus, Nov 01 2013
a(n) ~ 4.5*log_10(13)*n ~ 5.0127*n (conjectured). - M. F. Hasler, May 18 2017
MATHEMATICA
Table[Total[IntegerDigits[13^k]], {k, 0, 1000}]
PROG
(PARI) a(n)=sumdigits(13^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), this sequence (k=13).
KEYWORD
base,nonn
AUTHOR
N. J. A. Sloane, Dec 03 2010
STATUS
approved
Sum of digits of 9^n.
+10
15
1, 9, 9, 18, 18, 27, 18, 45, 27, 45, 45, 45, 54, 63, 72, 63, 63, 99, 81, 90, 90, 90, 90, 108, 117, 144, 117, 108, 90, 126, 99, 153, 144, 117, 153, 144, 162, 171, 153, 153, 153, 198, 162, 171, 198, 216, 171, 198, 198, 225, 153, 252, 216, 234, 207
OFFSET
0,2
COMMENTS
a(n) mod 9 = 0 for n > 0. - Reinhard Zumkeller, May 14 2011
LINKS
M. Sapir et al., The Decimal Expansions of Powers of 9: Problem 10758, Amer. Math. Monthly, 108 (Dec., 2001), 977-978.
H. G. Senge and E. G. Straus, PV-numbers and sets of multiplicity, Periodica Math. Hungar., 3 (1971), 93-100.
C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math., 319 (1980), 63-72.
FORMULA
a(n) = A007953(A001019(n)). - Michel Marcus, Nov 01 2013
MATHEMATICA
Table[Total[IntegerDigits[9^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) }
{ for (n=0, 1000, a=SumD(9^n); write("b065999.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
(PARI) a(n) = sumdigits(9^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), this sequence (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
Cf. also A056888, A001019.
KEYWORD
nonn,easy,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved
Sum of digits of 8^n.
+10
14
1, 8, 10, 8, 19, 26, 19, 26, 37, 35, 37, 62, 64, 71, 46, 62, 73, 80, 82, 80, 82, 89, 109, 89, 109, 125, 100, 107, 118, 107, 118, 125, 127, 107, 118, 125, 145, 143, 145, 152, 172, 170, 172, 188, 181, 170, 190, 215, 172, 215, 235, 233, 217, 215
OFFSET
0,2
LINKS
FORMULA
a(n) = A007953(A001018(n)). - Michel Marcus, Nov 01 2013
MATHEMATICA
Table[Total[IntegerDigits[8^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { for (n=0, 1000, a=SumD(8^n); write("b066004.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 06 2009
(PARI) a(n) = sumdigits(8^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), this sequence (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved
Sum of digits of 11^n.
+10
14
1, 2, 4, 8, 16, 14, 28, 38, 40, 53, 43, 41, 55, 47, 76, 71, 88, 86, 82, 83, 94, 71, 97, 95, 118, 101, 112, 125, 124, 140, 145, 137, 139, 143, 178, 140, 172, 200, 184, 188, 205, 203, 190, 164, 175, 215, 196, 248, 190, 218, 265, 251, 223, 230
OFFSET
0,2
LINKS
FORMULA
a(n) = A007953(A001020(n)). - Michel Marcus, Nov 01 2013
MATHEMATICA
Total/@(IntegerDigits/@(11^Range[0, 60])) (* Harvey P. Dale, Nov 02 2011 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) } { f=1; for (n=0, 1000, a=SumD(f); f*=11; write("b066005.txt", n, " ", a) ) } [Harry J. Smith, Nov 06 2009]
(PARI) a(n) = sumdigits(11^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003 (k=7), A066004 (k=8), A065999 (k=9), this sequence (k=11), A066006 (k=12), A175527 (k=13).
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved
Sum of digits of 4^n.
+10
13
1, 4, 7, 10, 13, 7, 19, 22, 25, 19, 31, 25, 37, 40, 43, 37, 58, 61, 64, 67, 61, 46, 58, 70, 73, 76, 79, 82, 85, 70, 82, 85, 88, 109, 103, 70, 109, 130, 106, 100, 112, 124, 118, 112, 115, 118, 139, 151, 127, 112, 115, 118, 121, 142, 145, 121, 160
OFFSET
0,2
LINKS
FORMULA
a(n) = A007953(A000302(n)). - Michel Marcus, Nov 01 2013 [corrected by Georg Fischer, Dec 19 2020]
a(n) = A001370(2n). Results given there imply a(n) > log_4(n) + 1/2, n > 0, but we can conjecture & expect a(n) ~ 9*log_10(2)*n. - M. F. Hasler, May 18 2017
MATHEMATICA
Table[Total[IntegerDigits[4^n]], {n, 0, 60}] (* Vincenzo Librandi, Oct 08 2013 *)
PROG
(PARI) SumD(x)= { local(s=0); while (x>9, s+=x-10*(x\10); x\=10); return(s + x) } { for (n=0, 1000, a=SumD(4^n); write("b065713.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 27 2009
(PARI) a065713(n)=sumdigits(4^n); \\ Michel Marcus, Nov 01 2013
CROSSREFS
Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), this sequence (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), A065999 (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 11 2001
STATUS
approved

Search completed in 0.011 seconds