Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Sep 07 2024 15:39:39
%S 1,9,9,18,18,27,18,45,27,45,45,45,54,63,72,63,63,99,81,90,90,90,90,
%T 108,117,144,117,108,90,126,99,153,144,117,153,144,162,171,153,153,
%U 153,198,162,171,198,216,171,198,198,225,153,252,216,234,207
%N Sum of digits of 9^n.
%C a(n) mod 9 = 0 for n > 0. - _Reinhard Zumkeller_, May 14 2011
%H N. J. A. Sloane, <a href="/A065999/b065999.txt">Table of n, a(n) for n = 0..10000</a>
%H M. Sapir et al., <a href="https://www.jstor.org/stable/2695428">The Decimal Expansions of Powers of 9: Problem 10758</a>, Amer. Math. Monthly, 108 (Dec., 2001), 977-978.
%H H. G. Senge and E. G. Straus, <a href="https://doi.org/10.1007/BF02018464">PV-numbers and sets of multiplicity</a>, Periodica Math. Hungar., 3 (1971), 93-100.
%H C. L. Stewart, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002197707">On the representation of an integer in two different bases</a>, J. Reine Angew. Math., 319 (1980), 63-72.
%F a(n) = A007953(A001019(n)). - _Michel Marcus_, Nov 01 2013
%t Table[Total[IntegerDigits[9^n]], {n, 0, 60}] (* _Vincenzo Librandi_, Oct 08 2013 *)
%o (PARI) SumD(x)= { local(s=0); while (x>9, s+=x%10; x\=10); return(s + x) }
%o { for (n=0, 1000, a=SumD(9^n); write("b065999.txt", n, " ", a) ) } \\ _Harry J. Smith_, Nov 06 2009
%o (PARI) a(n) = sumdigits(9^n); \\ _Michel Marcus_, Nov 01 2013
%Y Cf. sum of digits of k^n: A001370 (k=2), A004166 (k=3), A065713 (k=4), A066001 (k=5), A066002 (k=6), A066003(k=7), A066004 (k=8), this sequence (k=9), A066005 (k=11), A066006 (k=12), A175527 (k=13).
%Y Cf. also A056888, A001019.
%K nonn,easy,base
%O 0,2
%A _N. J. A. Sloane_, Dec 11 2001