[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a065160 -id:a065160
     Sort: relevance | references | number | modified | created      Format: long | short | data
Table of binary string substitutions: a(i,j) is obtained by substituting i for each 1-bit in j.
+10
4
1, 2, 2, 3, 4, 3, 4, 6, 10, 4, 5, 8, 15, 8, 5, 6, 10, 36, 12, 18, 6, 7, 12, 45, 16, 27, 20, 7, 8, 14, 54, 20, 68, 30, 42, 8, 9, 16, 63, 24, 85, 72, 63, 16, 9, 10, 18, 136, 28, 102, 90, 292, 24, 34, 10, 11, 20, 153, 32, 119, 108, 365, 32, 51, 36, 11, 12, 22, 170, 36, 264, 126, 438, 40, 132, 54, 74, 12
OFFSET
1,2
FORMULA
Table origin is a(1,1).
a(1,n) = a(n,1) = n.
a(0,n) = a(n,0) = 0.
a(i,j) = A065158(i,j)*i.
a(n,n) = A065159(n) = A065160(n)*n.
EXAMPLE
a(3,5): 5 = 101_2 -> (3)0(3) = (11)0(11)_2 = 11011_2 = 27.
a(5,3): 3 = 11_2 -> (5)(5) = (101)(101)_2 = 101101_2 = 45.
PROG
(PARI) T(n, k) = my(bk=binary(k), sn=Str(fromdigits(binary(n))), s=""); for (i=1, #bk, if (bk[i] == 1, s=concat(s, sn), s=concat(s, "0"))); fromdigits(apply(eval, Vec(s)), 2); \\ Michel Marcus, Feb 11 2023
CROSSREFS
KEYWORD
base,easy,nonn,tabl
AUTHOR
Marc LeBrun, Oct 18 2001
STATUS
approved
Binary string self-substitutions: a(n) is obtained by substituting the binary expansion of n for each 1-bit in the binary expansion of n.
+10
4
0, 1, 4, 15, 16, 85, 108, 511, 64, 585, 660, 5819, 816, 7085, 7644, 65535, 256, 4369, 4644, 78451, 5200, 87381, 91564, 1531639, 6336, 105625, 109876, 1825659, 118384, 1961821, 2029500, 33554431, 1024, 33825, 34884, 1149155, 37008, 1217189, 1250124, 41056743
OFFSET
0,3
FORMULA
a(0) = 0. a(2^n) = 4^n. a(4n+2) = (4n+2)*(1+a(4n+1)/(4n+1)).
a(n) = A065157(n,n) = A065158(n,n)*n = A065160(n)*n.
a(n) =z(n, n) with z(u, v) = if u=0 then 0 else if u mod 2 = 0 then z(u/2, v)*2 else z([u/2], v)*A062383(v)+v. - Reinhard Zumkeller, Feb 15 2004
EXAMPLE
a(5): 5 = 101 -> (101)0(101) = 1010101 = 85.
MATHEMATICA
bss[n_]:=Module[{idn2=IntegerDigits[n, 2]}, FromDigits[Flatten[idn2/.{1-> idn2}], 2]]; Array[bss, 40, 0] (* Harvey P. Dale, Aug 15 2017 *)
PROG
(Python)
def a(n): b = bin(n)[2:]; return int(b.replace("1", b), 2)
print([a(n) for n in range(40)]) # Michael S. Branicky, Aug 05 2022
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Marc LeBrun, Oct 18 2001
EXTENSIONS
Name clarified by Michael S. Branicky, Aug 05 2022
STATUS
approved
Table of reduced binary string substitutions: a(i,j) is obtained by substituting i for each 1-bit in j, then dividing by i.
+10
3
1, 1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 5, 4, 5, 1, 2, 9, 4, 9, 6, 1, 2, 9, 4, 9, 10, 7, 1, 2, 9, 4, 17, 10, 21, 8, 1, 2, 9, 4, 17, 18, 21, 8, 9, 1, 2, 17, 4, 17, 18, 73, 8, 17, 10, 1, 2, 17, 4, 17, 18, 73, 8, 17, 18, 11, 1, 2, 17, 4, 33, 18, 73, 8, 33, 18, 37, 12, 1, 2, 17, 4, 33, 34, 73, 8, 33
OFFSET
1,3
COMMENTS
Table origin is a(1,1). a(1,n)=n. a(n,1)=1. By convention a(0,n)=a(n,0)=0. a(i,j)=A065157(i,j)/i. a(n,n)=A065160(n)=A065159(n)/n.
EXAMPLE
a(3,5): 5=101->(3)0(3)=(11)0(11)=11011=27; 27/3=9. a(5,3): 3=11->(5)(5)=(101)(101)=101101=45; 45/5=9
CROSSREFS
KEYWORD
base,easy,nonn,tabl
AUTHOR
Marc LeBrun, Oct 18 2001
STATUS
approved

Search completed in 0.007 seconds