[go: up one dir, main page]

login
Search: a052335 -id:a052335
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into squares.
(Formerly M0221 N0079)
+10
111
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256
OFFSET
0,5
COMMENTS
Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301.
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. (Annotated scanned copy)
G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
M. D. Hirschhorn and J. A. Sellers, On a problem of Lehmer on partitions into squares, The Ramanujan Journal 8 (2004), 279-287.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems, arXiv:math/0604019 [math.GM], 2006.
Eric Weisstein's World of Mathematics, Partition
Eric Weisstein's World of Mathematics, Smarandache Sequences
Eric Weisstein's World of Mathematics, Square Number
FORMULA
G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if x<y then 0^x else f(x-y,y,z)+f(x,y+z,z+2). - Reinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)
EXAMPLE
p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [Paul D. Hanna]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From Gus Wiseman, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
(941)
(911111)
(44411)
(44111111)
(41111111111)
(11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
(333221)
(33311111)
(22222211)
(2222111111)
(221111111111)
(11111111111111)
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
end:
a:= n-> b(n, isqrt(n)):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
PROG
(Haskell)
a001156 = p (tail a000290_list) where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
(PARI) {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
(PARI) {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006
STATUS
approved
Number of partitions of n into distinct squares.
+10
108
1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 3, 1, 1, 4, 3, 0, 1, 2, 2, 1, 0, 1, 4, 3, 0, 2, 4, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 3, 6, 3, 0, 2, 5, 3, 0, 1, 3, 3, 3, 4
OFFSET
0,26
COMMENTS
"WEIGH" transform of squares A000290.
a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. - Alois P. Heinz, May 14 2014
Number of partitions of n in which each part i has multiplicity i. Example: a(50)=3 because we have [1,2,2,3,3,3,6,6,6,6,6,6], [1,7,7,7,7,7,7,7], and [3,3,3,4,4,4,4,5,5,5,5,5]. - Emeric Deutsch, Jan 26 2016
The Heinz numbers of integer partitions into distinct pairs are given by A324587. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Equivalent to Emeric Deutsch's comment, a(n) is the number of integer partitions of n where the multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in increasing order. The Heinz numbers of these partitions are given by A109298. For example, the first 30 terms count the following integer partitions:
1: (1)
4: (22)
5: (221)
9: (333)
10: (3331)
13: (33322)
14: (333221)
16: (4444)
17: (44441)
20: (444422)
21: (4444221)
25: (55555)
25: (4444333)
26: (555551)
26: (44443331)
29: (5555522)
29: (444433322)
30: (55555221)
30: (4444333221)
The case where the distinct parts are taken in decreasing order is A324572, with Heinz numbers given by A324571.
(End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
M. Brack, M. V. N. Murthy, and J. Bartel, Application of semiclassical methods to number theory, University of Regensburg (Germany, 2020).
Vaclav Kotesovec, Graph - The asymptotic ratio.
M. V. N. Murthy, Matthias Brack, Rajat K. Bhaduri, and Johann Bartel, Semi-classical analysis of distinct square partitions, arXiv:1808.05146 [cond-mat.stat-mech], 2018.
FORMULA
G.f.: Product_{n>=1} ( 1+x^(n^2) ).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * ((sqrt(2)-1)*zeta(3/2))^(2/3) * n^(1/3)) * ((sqrt(2)-1)*zeta(3/2))^(1/3) / (2^(4/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where zeta(3/2) = A078434. - Vaclav Kotesovec, Dec 09 2016
See Murthy, Brack, Bhaduri, Bartel (2018) for a more complete asymptotic expansion. - N. J. A. Sloane, Aug 17 2018
EXAMPLE
a(50)=3 because we have [1,4,9,36], [1,49], and [9,16,25]. - Emeric Deutsch, Jan 26 2016
From Gus Wiseman, Mar 09 2019: (Start)
The first 30 terms count the following integer partitions:
1: (1)
4: (4)
5: (4,1)
9: (9)
10: (9,1)
13: (9,4)
14: (9,4,1)
16: (16)
17: (16,1)
20: (16,4)
21: (16,4,1)
25: (25)
25: (16,9)
26: (25,1)
26: (16,9,1)
29: (25,4)
29: (16,9,4)
30: (25,4,1)
30: (16,9,4,1)
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i-1))))
end:
a:= n-> b(n, isqrt(n)):
seq(a(n), n=0..100); # Alois P. Heinz, May 14 2014
MATHEMATICA
nn=10; CoefficientList[Series[Product[(1+x^(k*k)), {k, nn}], {x, 0, nn*nn}], x] (* T. D. Noe, Jul 24 2006 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n - i^2, i-1]]]]; a[n_] := b[n, Floor[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}]; , {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *)
Table[Length[Select[IntegerPartitions[n], Reverse[Union[#]]==Length/@Split[#]&]], {n, 30}] (* Gus Wiseman, Mar 09 2019 *)
PROG
(PARI) a(n)=polcoeff(prod(k=1, sqrt(n), 1+x^k^2), n)
(PARI) first(n)=Vec(prod(k=1, sqrtint(n), 1+'x^k^2, O('x^(n+1))+1)) \\ Charles R Greathouse IV, Sep 03 2015
(Python)
from functools import cache
from sympy.core.power import isqrt
@cache
def b(n, i):
# Code after Alois P. Heinz
if n == 0: return 1
if i == 0: return 0
i2 = i*i
return b(n, i-1) + (0 if i2 > n else b(n - i2, i-1))
a = lambda n: b(n, isqrt(n))
print([a(n) for n in range(1, 101)]) # Darío Clavijo, Nov 30 2023
CROSSREFS
Cf. A001422, A003995, A078434, A242434 (the same for compositions), A279329.
Row sums of A341040.
KEYWORD
nonn,nice
EXTENSIONS
More terms from Michael Somos
STATUS
approved
Numbers n in whose prime factorization no exponent of any prime(k) exceeds k.
+10
34
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121
OFFSET
1,2
COMMENTS
Numbers not divisible by p^(1+A000720(p)) for any prime p, where A000720(p) gives the index of prime p: 1 for 2, 2 for 3, 3 for 5, and so on.
Also Heinz numbers of integer partitions where the multiplicity of i does not exceed i for any i (A052335). Differs from A048103 in lacking {625, 1250, 1875, 3750, 4375, 5625, 6875, 8125, 8750, ...}. - Gus Wiseman, Mar 09 2019
Asymptotic density is Product_{i>=1} 1-prime(i)^(-1-i) = 0.72102334... - Amiram Eldar, Oct 20 2020
LINKS
MATHEMATICA
Select[Range@ 121, Or[# == 1, AllTrue[FactorInteger[#], PrimePi[#1] >= #2 & @@ # &]] &] (* Michael De Vlieger, Jun 24 2017 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A276078 (ZERO-POS 1 1 A276077))
(Python)
from sympy import factorint, primepi
def ok(n):
f = factorint(n)
return all(f[i] <= primepi(i) for i in f)
print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Jun 24 2017
(PARI) isok(n) = my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > primepi(f[k, 1]), return(0))); return (1); \\ Michel Marcus, Jun 24 2017
(PARI) is(n) = {my(t=1); forprime(p = 2, , t++; pp = p^t; if(n%pp==0, return(0)); if(pp > n, return(1)))} \\ David A. Corneth, Jun 24 2017
(PARI) upto(n) = {my(v = vector(n, i, 1), t=1, res=List()); forprime(p=2, , t++; pp = p^t; if(pp>n, break); for(i=1, n\pp, v[pp*i] = 0)); for(i=1, n, if(v[i]==1, listput(res, i))); res} \\ David A. Corneth, Jun 24 2017
CROSSREFS
Positions of zeros in A276077.
Complement: A276079.
Sequence A276076 sorted into ascending order.
Subsequence of A048103 from which it differs for the first time at n=451, where a(451) = 626, while A048103(451) = 625, a value missing from here.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2016
STATUS
approved
Number of partitions of n such that the set of parts and the set of multiplicities of parts are equal.
+10
29
1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 3, 2, 3, 3, 5, 0, 4, 5, 2, 3, 8, 6, 5, 10, 9, 9, 16, 14, 12, 16, 17, 10, 17, 15, 16, 19, 35, 17, 34, 37, 40, 31, 54, 36, 60, 61, 58, 63, 88, 58, 88, 87, 91, 84, 115, 93, 116, 108, 115, 130, 190, 143, 165, 214, 219, 200, 255, 240
OFFSET
0,5
COMMENTS
The Heinz numbers of these partitions are given by A109297. - Gus Wiseman, Apr 02 2019
EXAMPLE
From Gus Wiseman, Apr 02 2019: (Start)
The initial terms count the following integer partitions:
0: ()
1: (1)
4: (22)
4: (211)
5: (221)
6: (3111)
8: (41111)
9: (333)
10: (511111)
10: (3331)
10: (322111)
11: (332111)
11: (322211)
12: (6111111)
12: (4221111)
12: (33222)
13: (33322)
13: (333211)
13: (332221)
14: (71111111)
14: (52211111)
14: (4421111)
14: (4222211)
14: (333221)
(End)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Union[#]==Union[Length/@Split[#]]&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 18 2006
EXTENSIONS
More terms from Alois P. Heinz, Aug 09 2016
STATUS
approved
Number of partitions of n into nonsquares.
+10
27
1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 9, 13, 15, 20, 24, 30, 37, 47, 55, 71, 83, 103, 123, 151, 178, 218, 257, 310, 366, 440, 515, 617, 722, 857, 1003, 1184, 1380, 1625, 1889, 2214, 2570, 3000, 3472, 4042, 4669, 5414, 6244, 7221, 8303, 9583, 10998, 12655, 14502
OFFSET
0,6
COMMENTS
Also, number of partitions of n where there are fewer than k parts equal to k for all k. - Jon Perry and Vladeta Jovovic, Aug 04 2004. E.g. a(8)=5 because we have 8=6+2=5+3=4+4=3+3+2.
Convolution of A276516 and A000041. - Vaclav Kotesovec, Dec 30 2016
From Gus Wiseman, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The Heinz numbers of the integer partitions described in Perry and Jovovic's comment are given by A325128, while the Heinz numbers of the integer partitions described in the name are given by A325129. In the former case, the first 10 terms count the following integer partitions:
() (2) (3) (4) (5) (6) (7) (8) (9)
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(62) (72)
(332) (432)
while in the latter case they count the following:
() (2) (3) (22) (5) (6) (7) (8) (63)
(32) (33) (52) (53) (72)
(222) (322) (62) (333)
(332) (522)
(2222) (3222)
(End)
REFERENCES
G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004. See page 48.
LINKS
T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
Daniel I. A. Cohen, PIE-sums: a combinatorial tool for partition theory. J. Combin. Theory Ser. A 31 (1981), no. 3, 223--236. MR0635367 (82m:10026). See Cor. 5. - N. J. A. Sloane, Mar 27 2012
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
FORMULA
G.f.: Product_{m>0} (1-x^(m^2))/(1-x^m). - Vladeta Jovovic, Aug 21 2003
a(n) = (1/n)*Sum_{k=1..n} (A000203(k)-A035316(k))*a(n-k), a(0)=1. - Vladeta Jovovic, Aug 21 2003
G.f.: Product_{i>=1} (Sum_{j=0..i-1} x^(i*j)). - Jon Perry, Jul 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3) - 3^(1/4) * Zeta(3/2) * n^(1/4) / 2^(3/4) - 3*Zeta(3/2)^2/(32*Pi)) * sqrt(Pi) / (2^(3/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Dec 30 2016
EXAMPLE
n=7: 2+5 = 2+2+3 = 7: a(7)=3;
n=8: 2+6 = 2+2+2+2 = 2+3+3 = 3+5 = 8: a(8)=5;
n=9: 2+7 = 2+2+5 = 2+2+2+3 = 3+3+3 = 3+6: a(9)=5.
MAPLE
g:=product((1-x^(i^2))/(1-x^i), i=1..70):gser:=series(g, x=0, 60):seq(coeff(gser, x^n), n=1..53); # Emeric Deutsch, Feb 09 2006
MATHEMATICA
nn=54; CoefficientList[ Series[ Product[ Sum[x^(i*j), {j, 0, i - 1}], {i, 1, nn}], {x, 0, nn}], x] (* Robert G. Wilson v, Aug 05 2004 *)
nmax = 100; CoefficientList[Series[Product[(1 - x^(k^2))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 29 2016 *)
PROG
(Haskell)
a087153 = p a000037_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Apr 25 2013
(PARI) first(n)=my(x='x+O('x^(n+1))); Vec(prod(m=1, sqrtint(n), (1-x^m^2)/(1-x^m))*prod(m=sqrtint(n)+1, n, 1/(1-x^m))) \\ Charles R Greathouse IV, Aug 28 2016
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Aug 21 2003
EXTENSIONS
Zero term added by Franklin T. Adams-Watters, Jan 25 2010
STATUS
approved
Number of partitions of n such that the set of parts and the set of multiplicities of parts are disjoint.
+10
22
1, 0, 2, 2, 2, 3, 5, 4, 7, 7, 13, 16, 19, 23, 33, 34, 44, 58, 63, 80, 101, 112, 139, 171, 196, 234, 288, 328, 394, 478, 545, 658, 777, 881, 1050, 1236, 1414, 1666, 1936, 2216, 2592, 3018, 3428, 3992, 4604, 5243, 6069, 6986, 7951, 9139, 10447, 11892, 13625
OFFSET
0,3
COMMENTS
The Heinz numbers of these partitions are given by A325131. - Gus Wiseman, Apr 02 2019
LINKS
EXAMPLE
From Gus Wiseman, Apr 02 2019: (Start)
The a(2) = 2 through a(9) = 7 partitions:
(2) (3) (4) (5) (6) (7) (8) (9)
(11) (111) (1111) (32) (33) (43) (44) (54)
(11111) (42) (52) (53) (63)
(222) (1111111) (62) (72)
(111111) (2222) (432)
(3311) (222111)
(11111111) (111111111)
(End)
MAPLE
b:= proc(n, i, p, m) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1, p, select(x-> x<i, m))+
add(`if`(i=j or i in m or j in p, 0, b(n-i*j, i-1,
select(x-> x<=n-i*j, p union {i}),
select(x-> x<i, m union {j}))), j=1..n/i)))
end:
a:= n-> b(n$2, {}$2):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 09 2016
MATHEMATICA
b[n_, i_, p_, m_] := b[n, i, p, m] = If[n == 0, 1, If[i<1, 0, b[n, i-1, p, Select[m, #<i&]] + Sum[If[i == j || MemberQ[m, i] || MemberQ[p, j], 0, b[n-i*j, i-1, Select[ p ~Union~ {i}, # <= n-i*j&], Select[m ~Union~ {j}, #<i&]]], {j, 1, n/i}]]]; a[n_] := b[n, n, {}, {}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Length/@Split[#]]=={}&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Feb 18 2006
EXTENSIONS
a(0)=1 prepended and more terms from Alois P. Heinz, Aug 09 2016
STATUS
approved
Partitions of n in which each part k occurs at least k times.
+10
22
1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 6, 8, 9, 10, 12, 15, 16, 19, 21, 25, 28, 32, 34, 41, 46, 51, 55, 64, 70, 79, 86, 97, 106, 119, 129, 146, 159, 175, 190, 214, 232, 256, 277, 306, 334, 367, 394, 434, 472, 515, 556, 607, 654, 714, 770, 836, 901, 978, 1048, 1140, 1226, 1322
OFFSET
0,5
COMMENTS
The Heinz numbers of these integer partitions are given by A324525. - Gus Wiseman, Mar 09 2019
LINKS
FORMULA
G.f.: Product_{k>=1} (1-x^k+x^(k^2))/(1-x^k).
EXAMPLE
a(9)=5 because we have [3,3,3], [2,2,2,2,1], [2,2,2,1,1,1], [2,2,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1].
From Gus Wiseman, Mar 09 2019: (Start)
The a(1) = 1 through a(9) = 5 integer partitions:
1 11 111 22 221 222 2221 2222 333
1111 11111 2211 22111 22211 22221
111111 1111111 221111 222111
11111111 2211111
111111111
(End)
MAPLE
g:=product((1-x^k+x^(k^2))/(1-x^k), k=1..100): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..66);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1), j=i..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..80); # Alois P. Heinz, Dec 28 2016
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-1], {j, i, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
Table[Length[Select[IntegerPartitions[n], And@@Table[Count[#, i]>=i, {i, Union[#]}]&]], {n, 0, 30}] (* Gus Wiseman, Mar 09 2019 *)
nmax = 100; CoefficientList[Series[Product[(1-x^k+x^(k^2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 28 2024 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 06 2006
STATUS
approved
Number of partitions of n containing no part i of multiplicity i.
+10
18
1, 0, 2, 2, 3, 5, 8, 9, 16, 19, 29, 36, 53, 65, 92, 115, 154, 195, 257, 318, 419, 516, 663, 821, 1039, 1277, 1606, 1963, 2441, 2978, 3675, 4454, 5469, 6603, 8043, 9688, 11732, 14066, 16963, 20260, 24310, 28953, 34586, 41047, 48857, 57802, 68528, 80862, 95534, 112388, 132391
OFFSET
0,3
COMMENTS
The Heinz numbers of these partitions are given by A325130. - Gus Wiseman, Apr 02 2019
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..12782 (terms 0..5000 from Alois P. Heinz)
FORMULA
a(n) = A276427(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^{i^2}).
EXAMPLE
a(4) = 3 because we have [1,1,1,1], [1,1,2], and [4]; the partitions [1,3], [2,2] do not qualify.
From Gus Wiseman, Apr 02 2019: (Start)
The a(2) = 2 through a(7) = 9 partitions:
(2) (3) (4) (5) (6) (7)
(11) (111) (211) (32) (33) (43)
(1111) (311) (42) (52)
(2111) (222) (511)
(11111) (411) (3211)
(3111) (4111)
(21111) (31111)
(111111) (211111)
(1111111)
(End)
MAPLE
g := product(1/(1-x^i)-x^(i^2), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(i=j, 0, b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 19 2016
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n][[1]], {n, 0, 60}] (* Jean-François Alcover, Nov 28 2016 after Alois P. Heinz's Maple code for A276427 *)
Table[Length[Select[IntegerPartitions[n], And@@Table[Count[#, i]!=i, {i, Union[#]}]&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 19 2016
STATUS
approved
Number of partitions of n in which each part k occurs more than k times.
+10
12
1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 4, 3, 6, 4, 7, 7, 8, 8, 12, 9, 15, 14, 17, 18, 24, 21, 29, 29, 35, 35, 46, 42, 56, 54, 65, 67, 81, 77, 98, 95, 115, 114, 139, 135, 164, 165, 190, 195, 230, 225, 272, 271, 313, 321, 370, 374, 433, 441, 501, 514, 589, 592, 681, 698, 778, 809, 907
OFFSET
0,7
COMMENTS
The Heinz numbers of these partitions are given by A325127. - Gus Wiseman, Apr 02 2019
LINKS
FORMULA
G.f.: Product_{k>=1} (1-x^k+x^(k*(k+1)))/(1-x^k).
EXAMPLE
a(2) = 1 because we have [1,1]; a(10) = 4 because we have [2,2,2,2,2], [2,2,2,2,1,1], [2,2,2,1,1,1,1] and [1^10].
From Gus Wiseman, Apr 02 2019: (Start)
The initial terms count the following integer partitions:
0: ()
2: (11)
3: (111)
4: (1111)
5: (11111)
6: (222)
6: (111111)
7: (1111111)
8: (2222)
8: (22211)
8: (11111111)
9: (222111)
9: (111111111)
10: (22222)
10: (222211)
10: (2221111)
10: (1111111111)
11: (2222111)
11: (22211111)
11: (11111111111)
12: (3333)
12: (222222)
12: (2222211)
12: (22221111)
12: (222111111)
12: (111111111111)
(End)
MAPLE
g:=product((1-x^k+x^(k*(k+1)))/(1-x^k), k=1..30): gser:=series(g, x=0, 75): seq(coeff(gser, x, n), n=0..70); # Emeric Deutsch, Mar 12 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-1), j=i+1..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..80); # Alois P. Heinz, Feb 09 2017
MATHEMATICA
CoefficientList[ Series[ Product[(1 - x^k + x^(k(k + 1)))/(1 - x^k), {k, 14}], {x, 0, 66}], x] (* Robert G. Wilson v, Mar 12 2006 *)
Table[Length[Select[IntegerPartitions[n], And@@Table[Count[#, i]>i, {i, Union[#]}]&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 09 2006
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Mar 12 2006
STATUS
approved
Heinz numbers of integer partitions of n into perfect squares (A001156).
+10
11
1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
7: {4}
8: {1,1,1}
14: {1,4}
16: {1,1,1,1}
23: {9}
28: {1,1,4}
32: {1,1,1,1,1}
46: {1,9}
49: {4,4}
53: {16}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
92: {1,1,9}
97: {25}
98: {1,4,4}
MATHEMATICA
Select[Range[100], And@@Cases[FactorInteger[#], {p_, _}:>IntegerQ[Sqrt[PrimePi[p]]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
STATUS
approved

Search completed in 0.015 seconds