# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001156 Showing 1-1 of 1 %I A001156 M0221 N0079 #112 Oct 27 2023 19:13:15 %S A001156 1,1,1,1,2,2,2,2,3,4,4,4,5,6,6,6,8,9,10,10,12,13,14,14,16,19,20,21,23, %T A001156 26,27,28,31,34,37,38,43,46,49,50,55,60,63,66,71,78,81,84,90,98,104, %U A001156 107,116,124,132,135,144,154,163,169,178,192,201,209,220,235,247,256 %N A001156 Number of partitions of n into squares. %C A001156 Number of partitions of n such that number of parts equal to k is multiple of k for all k. - _Vladeta Jovovic_, Aug 01 2004 %C A001156 Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - _Michael David Hirschhorn_, May 05 2005 %C A001156 The Heinz numbers of these partitions are given by A324588. - _Gus Wiseman_, Mar 09 2019 %D A001156 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A001156 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A001156 Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe) %H A001156 J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. %H A001156 J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. (Annotated scanned copy) %H A001156 H. L. Fisher, Letter to N. J. A. Sloane, Mar 16 1989 %H A001156 G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373. %H A001156 M. D. Hirschhorn and J. A. Sellers, On a problem of Lehmer on partitions into squares, The Ramanujan Journal 8 (2004), 279-287. %H A001156 F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997. %H A001156 Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018. %H A001156 Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018. %H A001156 James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4. %H A001156 F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006. %H A001156 Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems, arXiv:math/0604019 [math.GM], 2006. %H A001156 Eric Weisstein's World of Mathematics, Partition %H A001156 Eric Weisstein's World of Mathematics, Smarandache Sequences %H A001156 Eric Weisstein's World of Mathematics, Square Number %F A001156 G.f.: Product_{m>=1} 1/(1-x^(m^2)). %F A001156 G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - _Paul D. Hanna_, Mar 09 2012 %F A001156 a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - _Vladeta Jovovic_, Nov 20 2002 %F A001156 a(n) = f(n,1,3) with f(x,y,z) = if xn, 0, b(n-i^2, i)))) %p A001156 end: %p A001156 a:= n-> b(n, isqrt(n)): %p A001156 seq(a(n), n=0..120); # _Alois P. Heinz_, May 30 2014 %t A001156 CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *) %t A001156 Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* _Robert G. Wilson v_, Apr 12 2005, revised Sep 27 2011 *) %t A001156 f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* _Robert G. Wilson v_, Apr 14 2013 *) %t A001156 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* _Jean-François Alcover_, Nov 02 2015, after _Alois P. Heinz_ *) %o A001156 (Haskell) %o A001156 a001156 = p (tail a000290_list) where %o A001156 p _ 0 = 1 %o A001156 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A001156 -- _Reinhard Zumkeller_, Oct 31 2012, Aug 14 2011 %o A001156 (PARI) {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ _Paul D. Hanna_, Mar 09 2012 %o A001156 (PARI) {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ _Paul D. Hanna_, Mar 09 2012 %o A001156 (Magma) m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // _G. C. Greubel_, Nov 11 2018 %Y A001156 Cf. A000041, A000290, A033461, A131799, A218494, A285218, A304046. %Y A001156 Cf. A078134 (first differences). %Y A001156 Cf. A003108, A037444, A046042, A259792, A259793, A294529. %Y A001156 Row sums of A243148. %Y A001156 Euler trans. of A010052 (see also A308297). %Y A001156 Cf. A001462, A003114, A006141, A011757, A039900, A047993, A052335, A062457, A064174, A078135, A109298, A117144. %Y A001156 Cf. A324524, A324572, A324587, A324588. %K A001156 nonn,easy %O A001156 0,5 %A A001156 _N. J. A. Sloane_ %E A001156 More terms from _Eric W. Weisstein_ %E A001156 More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE