[go: up one dir, main page]

login
Search: a050464 -id:a050464
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{d|n, n/d=1 mod 4} d.
+10
11
1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
OFFSET
1,2
COMMENTS
Not multiplicative: a(3)*a(7) <> a(21), for example.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)
MAPLE
A050460 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if (n/d) mod 4 = 1 then
a := a+d ;
end if;
end do:
a;
end proc:
seq(A050460(n), n=1..40) ; # R. J. Mathar, Dec 20 2011
MATHEMATICA
a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) a(n)=sumdiv(n, d, if(n/d%4==1, d)) \\ Charles R Greathouse IV, Dec 04 2013
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
STATUS
approved
a(n) = Sum_{d|n, n/d=3 mod 4} d^2.
+10
7
0, 0, 1, 0, 0, 4, 1, 0, 9, 0, 1, 16, 0, 4, 26, 0, 0, 36, 1, 0, 58, 4, 1, 64, 0, 0, 82, 16, 0, 104, 1, 0, 130, 0, 26, 144, 0, 4, 170, 0, 0, 232, 1, 16, 234, 4, 1, 256, 49, 0, 290, 0, 0, 328, 26, 64, 370, 0, 1, 416, 0, 4, 523, 0, 0, 520, 1, 0, 538, 104, 1, 576, 0
OFFSET
1,6
LINKS
FORMULA
a(n) = A050461(n) - A050470(n). - Reinhard Zumkeller, Mar 06 2012
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A076577(n) - A050461(n).
a(n) = (A076577(n) - A050470(n))/2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 7*zeta(3)/16 - Pi^3/64 = 0.041426822002... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, #^2 &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 05 2023 *)
PROG
(Haskell)
a050465 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 3]
-- Reinhard Zumkeller, Mar 06 2012
(PARI) a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^2); \\ Amiram Eldar, Nov 05 2023
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
EXTENSIONS
Offset fixed by Reinhard Zumkeller, Mar 06 2012
STATUS
approved
Sum of divisors d of n such that n/d is not congruent to 0 mod 4.
+10
6
1, 3, 4, 6, 6, 12, 8, 12, 13, 18, 12, 24, 14, 24, 24, 24, 18, 39, 20, 36, 32, 36, 24, 48, 31, 42, 40, 48, 30, 72, 32, 48, 48, 54, 48, 78, 38, 60, 56, 72, 42, 96, 44, 72, 78, 72, 48, 96, 57, 93, 72, 84, 54, 120, 72, 96, 80, 90, 60, 144, 62, 96, 104, 96, 84, 144, 68
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k*x^k*(1 + x^k + x^(2*k))/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 12 2019
a(n) = A050460(n) + A002131(n/2) + A050464(n), where A002131(.)=0 for non-integer argument. - R. J. Mathar, May 25 2020
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(e-1) and a(p^e) = (p^(e+1)-1)/(p-1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 5*Pi^2/64 = 0.7710628... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/4^s). - Amiram Eldar, Dec 30 2022
EXAMPLE
The divisors of 8 are 1, 2, 4, and 8. 8/1 == 0 (mod 4) and 8/2 == 0 (mod 4). Hence, a(8) = 4 + 8 = 12.
MATHEMATICA
f[p_, e_] := If[p == 2, 3*2^(e-1), (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
PROG
(PARI) a(n)=sumdiv(n, d, if(n/d%4, d, 0)); \\ Andrew Howroyd, Jul 20 2018
CROSSREFS
Cf. A002131 (k=2), A078708 (k=3), this sequence (k=4), A285896 (k=5).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Apr 28 2017
STATUS
approved
Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).
+10
6
0, 1, 0, 2, 1, 3, 0, 5, 0, 7, 1, 6, 0, 8, 3, 10, 1, 9, 0, 15, 0, 13, 1, 15, 5, 14, 0, 16, 1, 21, 0, 21, 3, 19, 8, 18, 0, 20, 0, 35, 1, 24, 0, 27, 9, 25, 1, 30, 0, 36, 3, 28, 1, 27, 16, 40, 0, 31, 1, 45, 0, 32, 0, 42, 14, 39, 0, 39, 3, 56, 1, 45, 0, 38, 15, 40, 8, 42, 0, 71
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n, n/d==2 (mod 3)} d.
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - Seiichi Manyama, Jun 29 2023
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 11 2019
STATUS
approved
a(n) = Sum_{d|n, n/d=3 mod 4} d^3.
+10
5
0, 0, 1, 0, 0, 8, 1, 0, 27, 0, 1, 64, 0, 8, 126, 0, 0, 216, 1, 0, 370, 8, 1, 512, 0, 0, 730, 64, 0, 1008, 1, 0, 1358, 0, 126, 1728, 0, 8, 2198, 0, 0, 2960, 1, 64, 3402, 8, 1, 4096, 343, 0, 4914, 0, 0, 5840, 126, 512, 6886, 0, 1, 8064, 0, 8, 9991, 0
OFFSET
1,6
COMMENTS
From Robert G. Wilson v, Mar 26 2015: (Start)
a(n) = 0 for n = 1, 2, 4, 5, 8, 10, 13, 16, 17, 20, 25, ... (A072437).
a(n) = 1 for n = 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, ... (A002145). (End)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert G. Wilson v)
FORMULA
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A007331(n) - A050462(n).
a(n) = A050462(n) - A050471(n).
a(n) = (A007331(n) - A050471(n))/2.
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = Pi^4/192 - A175572/2 = 0.0128667399315... . (End)
MATHEMATICA
a[n_] := Total[(n/Select[Divisors@ n, Mod[#, 4] == 3 &])^3]; Array[a, 64] (* Robert G. Wilson v, Mar 26 2015 *)
a[n_] := DivisorSum[n, #^3 &, Mod[n/#, 4] == 3 &]; Array[a, 50] (* Amiram Eldar, Nov 05 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, ((n/d % 4)== 3)* d^3); \\ Michel Marcus, Mar 26 2015
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
EXTENSIONS
Offset changed from 0 to 1 by Robert G. Wilson v, Mar 27 2015
STATUS
approved
a(n) = Sum_{d|n, n/d=3 mod 4} d^4.
+10
5
0, 0, 1, 0, 0, 16, 1, 0, 81, 0, 1, 256, 0, 16, 626, 0, 0, 1296, 1, 0, 2482, 16, 1, 4096, 0, 0, 6562, 256, 0, 10016, 1, 0, 14722, 0, 626, 20736, 0, 16, 28562, 0, 0, 39712, 1, 256, 50706, 16, 1, 65536, 2401, 0, 83522, 0, 0, 104992, 626, 4096, 130402
OFFSET
1,6
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
FORMULA
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A285989(n) - A050463(n).
a(n) = A050463(n) - A050468(n).
a(n) = (A285989(n) - A050468(n))/2.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 31*zeta(5)/64 - 5*Pi^5/3072 = 0.00418296735902... . (End)
MATHEMATICA
Table[Total[Select[Divisors[n], Mod[n/#, 4]==3&]^4], {n, 60}] (* Harvey P. Dale, Jun 10 2023 *)
a[n_] := DivisorSum[n, #^4 &, Mod[n/#, 4] == 3 &]; Array[a, 50] (* Amiram Eldar, Nov 05 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^4); \\ Amiram Eldar, Nov 05 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
EXTENSIONS
Offset corrected by Amiram Eldar, Nov 05 2023
STATUS
approved

Search completed in 0.007 seconds