[go: up one dir, main page]

login
Search: a050464 -id:a050464
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{d|n, n/d=1 mod 4} d.
+0
11
1, 2, 3, 4, 6, 6, 7, 8, 10, 12, 11, 12, 14, 14, 18, 16, 18, 20, 19, 24, 22, 22, 23, 24, 31, 28, 30, 28, 30, 36, 31, 32, 34, 36, 42, 40, 38, 38, 42, 48, 42, 44, 43, 44, 60, 46, 47, 48, 50, 62, 54, 56, 54, 60, 66, 56, 58, 60, 59, 72, 62, 62, 73, 64, 84, 68
OFFSET
1,2
COMMENTS
Not multiplicative: a(3)*a(7) <> a(21), for example.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: Sum_{n>0} n*x^n/(1-x^(4*n)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{k>0} x^(4*k-3) / (1 - x^(4*k-3))^2. - Seiichi Manyama, Jun 29 2023
from Amiram Eldar, Nov 05 2023: (Start)
a(n) = A002131(n) - A050464(n).
a(n) = A050469(n) + A050464(n).
a(n) = (A002131(n) + A050469(n))/2.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A222183. (End)
MAPLE
A050460 := proc(n)
a := 0 ;
for d in numtheory[divisors](n) do
if (n/d) mod 4 = 1 then
a := a+d ;
end if;
end do:
a;
end proc:
seq(A050460(n), n=1..40) ; # R. J. Mathar, Dec 20 2011
MATHEMATICA
a[n_] := DivisorSum[n, Boole[Mod[n/#, 4] == 1]*#&]; Array[a, 70] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) a(n)=sumdiv(n, d, if(n/d%4==1, d)) \\ Charles R Greathouse IV, Dec 04 2013
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
STATUS
approved
a(n) = Sum_{d|n, n/d=3 mod 4} d^2.
+0
7
0, 0, 1, 0, 0, 4, 1, 0, 9, 0, 1, 16, 0, 4, 26, 0, 0, 36, 1, 0, 58, 4, 1, 64, 0, 0, 82, 16, 0, 104, 1, 0, 130, 0, 26, 144, 0, 4, 170, 0, 0, 232, 1, 16, 234, 4, 1, 256, 49, 0, 290, 0, 0, 328, 26, 64, 370, 0, 1, 416, 0, 4, 523, 0, 0, 520, 1, 0, 538, 104, 1, 576, 0
OFFSET
1,6
LINKS
FORMULA
a(n) = A050461(n) - A050470(n). - Reinhard Zumkeller, Mar 06 2012
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A076577(n) - A050461(n).
a(n) = (A076577(n) - A050470(n))/2.
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 7*zeta(3)/16 - Pi^3/64 = 0.041426822002... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, #^2 &, Mod[n/#, 4] == 3 &]; Array[a, 100] (* Amiram Eldar, Nov 05 2023 *)
PROG
(Haskell)
a050465 n = sum [d ^ 2 | d <- a027750_row n, mod (div n d) 4 == 3]
-- Reinhard Zumkeller, Mar 06 2012
(PARI) a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^2); \\ Amiram Eldar, Nov 05 2023
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
EXTENSIONS
Offset fixed by Reinhard Zumkeller, Mar 06 2012
STATUS
approved
a(n) = Sum_{d|n, n/d=3 mod 4} d^3.
+0
5
0, 0, 1, 0, 0, 8, 1, 0, 27, 0, 1, 64, 0, 8, 126, 0, 0, 216, 1, 0, 370, 8, 1, 512, 0, 0, 730, 64, 0, 1008, 1, 0, 1358, 0, 126, 1728, 0, 8, 2198, 0, 0, 2960, 1, 64, 3402, 8, 1, 4096, 343, 0, 4914, 0, 0, 5840, 126, 512, 6886, 0, 1, 8064, 0, 8, 9991, 0
OFFSET
1,6
COMMENTS
From Robert G. Wilson v, Mar 26 2015: (Start)
a(n) = 0 for n = 1, 2, 4, 5, 8, 10, 13, 16, 17, 20, 25, ... (A072437).
a(n) = 1 for n = 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, ... (A002145). (End)
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Robert G. Wilson v)
FORMULA
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A007331(n) - A050462(n).
a(n) = A050462(n) - A050471(n).
a(n) = (A007331(n) - A050471(n))/2.
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = Pi^4/192 - A175572/2 = 0.0128667399315... . (End)
MATHEMATICA
a[n_] := Total[(n/Select[Divisors@ n, Mod[#, 4] == 3 &])^3]; Array[a, 64] (* Robert G. Wilson v, Mar 26 2015 *)
a[n_] := DivisorSum[n, #^3 &, Mod[n/#, 4] == 3 &]; Array[a, 50] (* Amiram Eldar, Nov 05 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, ((n/d % 4)== 3)* d^3); \\ Michel Marcus, Mar 26 2015
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
EXTENSIONS
Offset changed from 0 to 1 by Robert G. Wilson v, Mar 27 2015
STATUS
approved
a(n) = Sum_{d|n, n/d=3 mod 4} d^4.
+0
5
0, 0, 1, 0, 0, 16, 1, 0, 81, 0, 1, 256, 0, 16, 626, 0, 0, 1296, 1, 0, 2482, 16, 1, 4096, 0, 0, 6562, 256, 0, 10016, 1, 0, 14722, 0, 626, 20736, 0, 16, 28562, 0, 0, 39712, 1, 256, 50706, 16, 1, 65536, 2401, 0, 83522, 0, 0, 104992, 626, 4096, 130402
OFFSET
1,6
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
FORMULA
From Amiram Eldar, Nov 05 2023: (Start)
a(n) = A285989(n) - A050463(n).
a(n) = A050463(n) - A050468(n).
a(n) = (A285989(n) - A050468(n))/2.
Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = 31*zeta(5)/64 - 5*Pi^5/3072 = 0.00418296735902... . (End)
MATHEMATICA
Table[Total[Select[Divisors[n], Mod[n/#, 4]==3&]^4], {n, 60}] (* Harvey P. Dale, Jun 10 2023 *)
a[n_] := DivisorSum[n, #^4 &, Mod[n/#, 4] == 3 &]; Array[a, 50] (* Amiram Eldar, Nov 05 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d % 4 == 3) * d^4); \\ Amiram Eldar, Nov 05 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 23 1999
EXTENSIONS
Offset corrected by Amiram Eldar, Nov 05 2023
STATUS
approved
Sum of divisors d of n such that n/d is not congruent to 0 mod 4.
+0
6
1, 3, 4, 6, 6, 12, 8, 12, 13, 18, 12, 24, 14, 24, 24, 24, 18, 39, 20, 36, 32, 36, 24, 48, 31, 42, 40, 48, 30, 72, 32, 48, 48, 54, 48, 78, 38, 60, 56, 72, 42, 96, 44, 72, 78, 72, 48, 96, 57, 93, 72, 84, 54, 120, 72, 96, 80, 90, 60, 144, 62, 96, 104, 96, 84, 144, 68
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} k*x^k*(1 + x^k + x^(2*k))/(1 - x^(4*k)). - Ilya Gutkovskiy, Sep 12 2019
a(n) = A050460(n) + A002131(n/2) + A050464(n), where A002131(.)=0 for non-integer argument. - R. J. Mathar, May 25 2020
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(2^e) = 3*2^(e-1) and a(p^e) = (p^(e+1)-1)/(p-1) if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 5*Pi^2/64 = 0.7710628... . (End)
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-1/4^s). - Amiram Eldar, Dec 30 2022
EXAMPLE
The divisors of 8 are 1, 2, 4, and 8. 8/1 == 0 (mod 4) and 8/2 == 0 (mod 4). Hence, a(8) = 4 + 8 = 12.
MATHEMATICA
f[p_, e_] := If[p == 2, 3*2^(e-1), (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 30 2022 *)
PROG
(PARI) a(n)=sumdiv(n, d, if(n/d%4, d, 0)); \\ Andrew Howroyd, Jul 20 2018
CROSSREFS
Cf. A002131 (k=2), A078708 (k=3), this sequence (k=4), A285896 (k=5).
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, Apr 28 2017
STATUS
approved
Expansion of Sum_{k>=1} k * x^(2*k) / (1 - x^(3*k)).
+0
6
0, 1, 0, 2, 1, 3, 0, 5, 0, 7, 1, 6, 0, 8, 3, 10, 1, 9, 0, 15, 0, 13, 1, 15, 5, 14, 0, 16, 1, 21, 0, 21, 3, 19, 8, 18, 0, 20, 0, 35, 1, 24, 0, 27, 9, 25, 1, 30, 0, 36, 3, 28, 1, 27, 16, 40, 0, 31, 1, 45, 0, 32, 0, 42, 14, 39, 0, 39, 3, 56, 1, 45, 0, 38, 15, 40, 8, 42, 0, 71
OFFSET
1,4
LINKS
FORMULA
a(n) = Sum_{d|n, n/d==2 (mod 3)} d.
G.f.: Sum_{k>0} x^(3*k-1) / (1 - x^(3*k-1))^2. - Seiichi Manyama, Jun 29 2023
MATHEMATICA
nmax = 80; CoefficientList[Series[Sum[k x^(2 k)/(1 - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, # &, MemberQ[{2}, Mod[n/#, 3]] &], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 11 2019
STATUS
approved

Search completed in 0.004 seconds