[go: up one dir, main page]

login
Search: a056536 -id:a056536
     Sort: relevance | references | number | modified | created      Format: long | short | data
Mapping from the column-by-column reading to the half-antidiagonal reading of the triangular tables. Inverse of A056536.
+20
5
1, 2, 4, 3, 6, 9, 5, 8, 12, 16, 7, 11, 15, 20, 25, 10, 14, 19, 24, 30, 36, 13, 18, 23, 29, 35, 42, 49, 17, 22, 28, 34, 41, 48, 56, 64, 21, 27, 33, 40, 47, 55, 63, 72, 81, 26, 32, 39, 46, 54, 62, 71, 80, 90, 100, 31, 38, 45, 53, 61, 70, 79, 89, 99, 110, 121, 37, 44, 52, 60, 69
OFFSET
1,2
COMMENTS
Moves triangular numbers (A000217) to squares (A000290), i.e., A056537(A000217(i)) = A000290(i) for i >= 1.
As a square array, this is the dispersion of the complement of the squares; see A082152. - Clark Kimberling, Apr 05 2003
FORMULA
Triangle T(n, k), 1<=k<=n, read by rows, defined by: T(n, k) = 0 for n<k and T(n, k) = A002620(n-k+1) + k*n + k - n if n>=k. T(n, n) = n^2; T(n, 1) = 1 + A002620(n) = A033638(n). - Philippe Deléham, Feb 16 2004
Square: t(n,k) = (n-1)(n+k) + k^2/4 + (1/8)(7+(-1)^k). - Clark Kimberling, Aug 08 2013
EXAMPLE
As a square array, a northwest corner:
1 ... 2 ... 3 ... 5 ... 7 ... 10
4 ... 6 ... 8 ... 11 .. 14 .. 18
9 ... 12 .. 15 .. 19 .. 23 .. 28
16 .. 20 .. 24 .. 29 .. 34 .. 40
25 .. 30 .. 35 .. 41 .. 47 .. 54
36 .. 42 .. 48 .. 55 .. 62 .. 70
49 .. 56 .. 63 .. 71 .. 79 .. 88
64 .. 72 .. 80 .. 89 .. 98 .. 108
- Clark Kimberling, Aug 08 2013
MAPLE
# using Maple procedure nthmember given in A054426:
[seq(nthmember(j, A056536), j=1..105)];
MATHEMATICA
(* Program generates the dispersion array T of the increasing sequence f[n] *)
r=40; r1=12; c=40; c1=12; f[n_] := n+Floor[1/2+Sqrt[n]] (* complement of column 1 *); mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A056537 array *)
Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A056537 sequence *)
(* Clark Kimberling, Jun 06 2011 *)
CROSSREFS
Cf. A185787 (dispersion of complement of triangular numbers).
Cf. A082152 (dispersion of complement of pentagonal numbers).
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jun 20 2000
STATUS
approved
Dispersion of the complement of row 1 of A056536.
+20
3
1, 4, 2, 9, 6, 3, 16, 12, 8, 5, 25, 20, 15, 11, 7, 36, 30, 24, 19, 14, 10, 49, 42, 35, 29, 23, 18, 13, 64, 56, 48, 41, 34, 28, 22, 17, 81, 72, 63, 55, 47, 40, 33, 27, 21, 100, 90, 80, 71, 62, 54, 46, 39, 32, 26, 121, 110, 99, 89, 79, 70, 61, 53, 45, 38, 31, 144, 132, 120, 109
OFFSET
1,2
COMMENTS
Rectangular array read by antidiagonals; a permutation of the natural numbers. (Row 1) = squares = A000290(n) = n^2. (Dispersion of complement of column 1 of A082156) = (Transpose of A056537). The associated fractal sequence is A122196.
LINKS
C. Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
FORMULA
The transpose of A056536.
EXAMPLE
Northwest corner:
1 4 9 16 25
2 6 12 20 30
3 8 15 24 35
5 11 19 29 41
7 14 23 34 47
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 05 2003
STATUS
approved
Catalan triangle read by rows. Also triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
+10
32
1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 4, 5, 1, 5, 9, 5, 1, 6, 14, 14, 1, 7, 20, 28, 14, 1, 8, 27, 48, 42, 1, 9, 35, 75, 90, 42, 1, 10, 44, 110, 165, 132, 1, 11, 54, 154, 275, 297, 132, 1, 12, 65, 208, 429, 572, 429, 1, 13, 77, 273, 637, 1001, 1001, 429, 1, 14, 90, 350, 910, 1638, 2002, 1430, 1, 15, 104
OFFSET
0,6
COMMENTS
There are several versions of a Catalan triangle: see A009766, A008315, A028364, A053121.
Number of standard tableaux of shape (n-k,k) (0<=k<=floor(n/2)). Example: T(4,1)=3 because in th top row we can have 124, 134, or 123 (but not 234). - Emeric Deutsch, May 23 2004
T(n,k) is the number of n-digit binary words (length n sequences on {0,1}) containing k 1's such that no initial segment of the sequence has more 1's than 0's. - Geoffrey Critzer, Jul 31 2009
T(n,k) is the number of dispersed Dyck paths (i.e. Motzkin paths with no (1,0) steps at positive heights) of length n and having k (1,1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), H=(1,0), we have HHHUD, HHUDH, HUDHH, and UDHHH. - Emeric Deutsch, May 30 2011
T(n,k) is the number of length n left factors of Dyck paths having k (1,-1)-steps. Example: T(5,1)=4 because, denoting U=(1,1), D=(1,-1), we have UUUUD, UUUDU, UUDUU, and UDUUU. There is a simple bijection between length n left factors of Dyck paths and dispersed Dyck paths of length n, that takes D steps into D steps. - Emeric Deutsch, Jun 19 2011
Triangle, with zeros omitted, given by (1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, ...) DELTA (0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 12 2011
T(n,k) are rational multiples of A055151(n,k). - Peter Luschny, Oct 16 2015
T(2*n,n) = Sum_{k>=0} T(n,k)^2 = A000108(n), T(2*n+1,n) = A000108(n+1). - Michael Somos, Jun 08 2020
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
P. J. Larcombe, A question of proof..., Bull. Inst. Math. Applic. (IMA), 30, Nos. 3/4, 1994, 52-54.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Tewodros Amdeberhan, Moa Apagodu, and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
Nantel Bergeron, Kelvin Chan, Yohana Solomon, Farhad Soltani, and Mike Zabrocki, Quasisymmetric harmonics of the exterior algebra, arXiv:2206.02065 [math.CO], 2022.
Chassidy Bozeman, Christine Cheng, Pamela E. Harris, Stephen Lasinis, and Shanise Walker, The Pinnacle Sets of a Graph, arXiv:2406.19562 [math.CO], 2024. See pp. 9-10.
Suyoung Choi and Hanchul Park, A new graph invariant arises in toric topology, arXiv preprint arXiv:1210.3776 [math.AT], 2012.
C. Kenneth Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
L. Jiu, V. H. Moll, and C. Vignat, Identities for generalized Euler polynomials, arXiv:1401.8037 [math.PR], 2014.
N. Lygeros and O. Rozier, A new solution to the equation tau(rho) == 0 (mod p), J. Int. Seq. 13 (2010) # 10.7.4.
M. A. A. Obaid, S. K. Nauman, W. M. Fakieh, and C. M. Ringel, The numbers of support-tilting modules for a Dynkin algebra, 2014 and J. Int. Seq. 18 (2015) 15.10.6.
Alon Regev, The central component of a triangulation, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.1, p. 7.
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
L. W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), no. 1, 83-90. [Annotated scanned copy]
Zheng Shi, Impurity entropy of junctions of multiple quantum wires, arXiv preprint arXiv:1602.00068 [cond-mat.str-el], 2016 (See Appendix A).
FORMULA
T(n, 0) = 1 if n >= 0; T(2*k, k) = T(2*k-1, k-1) if k>0; T(n, k) = T(n-1, k-1) + T(n-1, k) if k=1, 2, ..., floor(n/2). - Michael Somos, Aug 17 1999
T(n, k) = binomial(n, k) - binomial(n, k-1). - Michael Somos, Aug 17 1999
Rows of Catalan triangle A008313 read backwards. Sum_{k>=0} T(n, k)^2 = A000108(n); A000108 : Catalan numbers. - Philippe Deléham, Feb 15 2004
T(n,k) = C(n,k)*(n-2*k+1)/(n-k+1). - Geoffrey Critzer, Jul 31 2009
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A001405(n), A126087(n), A128386(n), A121724(n), A128387(n), A132373(n), A132374(n), A132375(n), A121725(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Dec 12 2011
EXAMPLE
Triangle begins:
1;
1;
1, 1;
1, 2;
1, 3, 2;
1, 4, 5;
1, 5, 9, 5;
1, 6, 14, 14;
1, 7, 20, 28, 14;
...
T(5,2) = 5 because there are 5 such sequences: {0, 0, 0, 1, 1}, {0, 0, 1, 0, 1}, {0, 0, 1, 1, 0}, {0, 1, 0, 0, 1}, {0, 1, 0, 1, 0}. - Geoffrey Critzer, Jul 31 2009
MAPLE
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, add(b(x-1, y+j), j=[-1, 1])))
end:
T:= (n, k)-> b(n, n-2*k):
seq(seq(T(n, k), k=0..n/2), n=0..16); # Alois P. Heinz, Oct 14 2022
MATHEMATICA
Table[Binomial[k, i]*(k - 2 i + 1)/(k - i + 1), {k, 0, 20}, {i, 0, Floor[k/2]}] // Grid (* Geoffrey Critzer, Jul 31 2009 *)
PROG
(PARI) {T(n, k) = if( k<0 || k>n\2, 0, if( n==0, 1, T(n-1, k-1) + T(n-1, k)))}; /* Michael Somos, Aug 17 1999 */
(Haskell)
a008315 n k = a008315_tabf !! n !! k
a008315_row n = a008315_tabf !! n
a008315_tabf = map reverse a008313_tabf
-- Reinhard Zumkeller, Nov 14 2013
CROSSREFS
T(2n, n) = A000108 (Catalan numbers), row sums = A001405 (central binomial coefficients).
This is also the positive half of the triangle in A008482. - Michael Somos
This is another reading (by shallow diagonals) of the triangle A009766, i.e. A008315[n] = A009766[A056536[n]].
KEYWORD
nonn,tabf,nice,easy
EXTENSIONS
Expanded description from Clark Kimberling, Jun 15 1997
STATUS
approved
Consider the triangle shown below; sequence contains the concatenation of numbers read at a 45-degree angle upwards with horizontal beginning with the first term of a row.
+10
2
1, 2, 43, 75, 1186, 16129, 22171310, 29231814, 3730241915, 4638312520, 564739322621, 675748403327, 79685849413428, 92806959504235, 10693817060514336, 121107948271615244, 137122108958372625345, 1541381231099684736354, 1721551391241109785746455
OFFSET
1,2
COMMENTS
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17 18 19 20 21
...
a(n) also is the concatenation of the terms of the n-th row of A056536. - Michel Marcus, Dec 14 2023
LINKS
MAPLE
read("transforms"):
A079823aux := proc(n, k)
A000124(n)+k ;
end proc:
A079823 := proc(n)
local L, k, n0 ;
n0 := n-1 ;
L := [] ;
for k from 0 do
if k > n0-k then
break;
end if;
L := [op(L), A079823aux(n0-k, k)] ;
end do:
digcatL(L) ;
end proc: # R. J. Mathar, Aug 23 2012
# second Maple program:
T:= (i, j)-> i*(i-1)/2+j:
a:= n-> parse(cat(seq(T(n-j, j+1), j=0..(n-1)/2))):
seq(a(n), n=1..23); # Alois P. Heinz, Aug 03 2022
MATHEMATICA
Table[FromDigits[Join@@IntegerDigits[Table[Binomial[n-k+1, 2] + k, {k, Ceiling[n/2]}]]], {n, 30}] (* G. C. Greubel, Dec 13 2023 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Feb 11 2003
EXTENSIONS
More terms from Jason D. W. Taff (jtaff(AT)jburroughs.org), Oct 31 2003
Corrected by Philippe Deléham, Feb 16 2004
STATUS
approved
Numbers in n-th upward diagonal of triangle T : 0; 1, 2; 3, 4, 5; 6, 7, 8, 9; ...
+10
2
0, 1, 3, 2, 6, 4, 10, 7, 5, 15, 11, 8, 21, 16, 12, 9, 28, 22, 17, 13, 36, 29, 23, 18, 14, 45, 37, 30, 24, 19, 55, 46, 38, 31, 25, 20, 66, 56, 47, 39, 32, 26, 78, 67, 57, 48, 40, 33, 27, 91, 79, 68, 58, 49, 41, 34, 105, 92, 80, 69, 59, 50, 42, 35, 120, 106, 93, 81, 70, 60, 51
OFFSET
0,3
COMMENTS
See also A090894 (downward diagonal).
FORMULA
a(n) = A056536(n+1) - 1.
EXAMPLE
0; 1; 3,2; 6,4; 10,7,5; 15,11,8; 21,16,12,9; 28,22,17,13; ...
PROG
(PARI) T(n, k)=(n-k)^2+(n+k) /* Michael Somos, May 31 2005 */
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Feb 25 2004
STATUS
approved
Array T(n,k) = n*(n+k), read by antidiagonals.
+10
1
0, 1, 0, 4, 2, 0, 9, 6, 3, 0, 16, 12, 8, 4, 0, 25, 20, 15, 10, 5, 0, 36, 30, 24, 18, 12, 6, 0, 49, 42, 35, 28, 21, 14, 7, 0, 64, 56, 48, 40, 32, 24, 16, 8, 0, 81, 72, 63, 54, 45, 36, 27, 18, 9, 0, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, 121, 110, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0
OFFSET
0,4
LINKS
Muniru A Asiru, Table of n, a(n) for n = 0..5150 (rows n = 0..100,flattened)
FORMULA
G.f.: x*(1+x-2*x^2*y)/((1-x*y)^2*(1-x)^3). - Vladeta Jovovic, Mar 05 2004
EXAMPLE
Table begins
0;
1, 0;
4, 2, 0;
9, 6, 3, 0;
16, 12, 8, 4, 0;
25, 20, 15, 10, 5, 0;
36, 30, 24, 18, 12, 6, 0;
...
a(5,3) = 40 because 5 * (5 + 3) = 5 * 8 = 40.
MAPLE
seq(seq((j-i)*j, i=0..j), j=0..14);
MATHEMATICA
Table[# (# + k) &[m - k], {m, 0, 11}, {k, 0, m}] // Flatten (* Michael De Vlieger, Oct 15 2018 *)
PROG
(GAP) Flat(List([0..11], j->List([0..j], i->j*(j-i)))); # Muniru A Asiru, Sep 11 2018
CROSSREFS
Columns: a(n, 0) = A000290(n), a(n, 1) = A002378(n), a(n, 2) = A005563(n), a(n, 3) = A028552(n), a(n, 4) = A028347(n+2), a(n, 5) = A028557(n), a(n, 6) = A028560(n), a(n, 7) = A028563(n), a(n, 8) = A028566(n). Diagonals: a(n, n-4) = A054000(n-1), a(n, n-3) = A014107(n), a(n, n-2) = A046092(n-1), a(n, n-1) = A000384(n), a(n, n) = A001105(n), a(n, n+1) = A014105(n), a(n, n+2) = A046092(n), a(n, n+3) = A014106(n), a(n, n+4) = A054000(n+1), a(n, n+5) = A033537(n). Also note that the sums of the antidiagonals = A002411.
KEYWORD
easy,nonn,tabl
AUTHOR
Ross La Haye, Mar 02 2004
EXTENSIONS
More terms from Emeric Deutsch, Mar 15 2004
STATUS
approved

Search completed in 0.039 seconds